
BB50

Laboratory Setup Ball and Beam

© Copyright Ingenieurbüro Gurski-Schramm 2011 Date: June 30, 2011

Bismarckstraße 67 . im Technologiezentrum . D-47057 Duisburg . Telefon 0203/37809-20 . Telefax 0203/37809-26

Assembly and Start-Up 1

Technical Data 2

Mathematical Model of the System 3

Theoretical Background of the State Controller 4

Theoretical Background of the Fuzzy Controller 5

Program Operation 6

BB50 Software 7

Laboratory Experiment Ball and Beam BB50 Table of Contents

i

Assembly and Start-Up

Date 29. June 2011

Laboratory Experiment Ball and Beam BB50 Assembly and Start-Up

Assembly and Start-Up

1 Assembly and Start-Up 1-1

1.1 Unpacking . 1-1

1.2 Setting up the System . 1-1

1.2.1 The BB50 Mechanics . 1-1

1.2.2 Actuator . 1-1

1.3 Description of the BB50 Mechanical Setup . 1-1

1.4 Description of the BB50 Actuator . 1-2

1.4.1 The Rear Panel . 1-2

1.4.2 The Front Panel . 1-2

1.4.2.1 Panel Section SYSTEM STATUS . 1-2

1.4.2.2 Panel Section POWER . 1-2

1.4.2.3 Panel Section MONITOR . 1-3

1.4.2.4 Panel Section CONTROLLER . 1-3

1.5 Connecting the System Components and Start Up . 1-3

1.6 Manual Control . 1-4

1.7 Control with External Controller . 1-4

1.8 PC Control . 1-4

1.9 Output Stage Release . 1-4

1.10 Locating Errors . 1-5

Laboratory Experiment Ball and Beam BB50 Table of Contents

Assembly and Start-Up i

Table of Contents Laboratory Experiment Ball and Beam BB50

ii Assembly and Start-Up

1 Assembly and Start-Up

1.1 Unpacking

After the BB50 has been unpacked, all components are to

be checked visually for damages as well as for

completeness. Complain any possible damage caused by

transportation to the transporter as well as to us. In this

case, please secure the packaging until final clarification.

The standard shipment of the BB50 consists of:

• The BB50 mechanics consisting of a DC motor, an

incremental encoder, a camera with lighting

equipment completely premounted and wired.

• A 19" plug-in box, the actuator, containing a

power supply, a servo amplifier controlling the

current of the motor, a signal adaption unit and

measurement outputs.

• A lead to connect the actuator to the BB50

mechanics.

• A mains supply lead.

• A metal ball and a squash ball.

• Two halogen bulbs.

• Detailed documentation of the hardware and

software.

Depending on the desired option, the shipment is

extended by the following items:

• Option 500-02, a PC plug-in card MF624 for a PC

with PCI slot, two 37 pol. connection cables as

well as a CD containing the executable program

for the system control.

• Option 500-03 extends the Option 500-02 by a

fuzzy controller. The CD contains the executable

fuzzy controller program.

• Option 500-05, the CD contains the C++ source

files of the programs from the options 500-02 and

500-03 with additional library functions for fuzzy

operations and graphic output.

• Option 500-06, a monochrome monitor suitable

for display of the camera image and for service

incl. power supply and connection cable.

1.2 Setting up the System

1.2.1 The BB50 Mechanics

To avoid deformation of the Plexiglas parts, choose a

place, where the system is not exposed to extreme

temperatures. In particular direct sun light and direct heat

radiation, e. g. by a radiator, are to be avoided. Direct sun

light causes sensor failures especially of the camera.

The system must be placed on a solid surface.

Mount the two halogen bulbs into the corresponding

lampholders located on top of the system.

1.2.2 Actuator

The air must be able to circulate freely above, below as

well as behind the actuator box.

Do not use a soft surface. Otherwise the ventilation slots

located on the bottom of the actuator box could be covered

due to its weight.

Do not place any objects, e. g. manuals on top of the

actuator box. (heat exchange).

1.3 Description of the BB50
Mechanical Setup

Aluminium profiles form the platform and the framework

of the laboratory setup which is covered at the side by four

sheets of Plexiglas. A camera module and the lighting

equipment is mounted in an aluminium box on top of the

system. The 30 polar terminal to connect to the actuator

Laboratory Experiment Ball and Beam BB50 Assembly and Start-Up

Assembly and Start-Up 1-1

is located at its rear panel. The beam is located in the

centre of the system. It is driven by a tooth-belt, a

tooth-wheel and a DC motor so that a ball can be stabilized

at a desired position. The motor is located bottom left of

the system box. The angle of the beam is measured by an

incremental encoder mounted at the rear end of the beam

shaft in the centre of the system. Two micro switches are

located below the beam. One of them is closed when the

beam reaches its maximum angle.

1.4 Description of the BB50
Actuator

1.4.1 The Rear Panel

Figure 1.1 displays the components located on the rear

panel. The mains input unit is located on the right. It

contains a fuse holder, the mains inlet and the power

switch. Located on the left side are:

• the 30-polar connector for the mechanical system

• the two 37-polar sockets to connect the actuator to

the MF624 PC-card (Options 500-02, 500-03),

• the cinch terminal to connect a monitor (option

500-06) for the camera signal.

1.4.2 The Front Panel

Figure 1.2 displays the components located on the front

panel.

1.4.2.1 Panel Section SYSTEM
STATUS

Light emitting diodes indicate different functions/states

of the system:

• System (green): Mechanical system is connected

to the actuator

• Ready (green): Indicates a successful system test

Controller:

• Manual (red): Manual control is enabled

• PC (red): PC control is enabled

• Extern (red): An external input is enabled

The servo amplifier functioning as a current controller for

the motor is located on the left side of the front panel. Its

transfer behaviour is proportional.

1.4.2.2 Panel Section POWER

Five light emitting diodes indicate the availability of the

voltages.

• +15V (green): A voltage of +15V is available.

• -15V (green): A voltage of -15V is available.

• +5V (green): A voltage of +5V is available.

Figure 1.1 : Rear panel with denotations

Assembly and Start-Up Laboratory Experiment Ball and Beam BB50

1-2 Assembly and Start-Up

• +35V (green): +35V power supply for the servo

amplifiers is available.

• -35V (green): -35V power supply for the servo

amplifiers is available.

1.4.2.3 Panel Section MONITOR

This panel section provides the following signals at its 4

BNC-terminals:

• Position: The position of the ball on the beam

• INC-CHA: Channel A of the incremental angle

encoder

• INC-CHB: Channel B of the incremental angle

encoder

• Control Signal: The control signal of the controller

1.4.2.4 Panel Section CONTROLLER

This panel section allows a direct control of the servo

amplifier either by using a potentiometer or by connecting

an external controller. It contains the control of the

lighting of the beam in addition.

• Switch Light: Switches the lighting "ON" or

"OFF".

• Potentiometer MANUAL: Allows for manual

adjusting the control signal (force) of the beam.

• Key MANUAL START: Connects the control

signal adjusted by the potentiometer MANUAL to

the servo amplifier of the motor. This is true only

as long as the key is pressed. Afterwards the

control is at the state which was active before

pressing the key.

• BNC socket CONTROLSIGNAL INPUT: Input

for setpoint of the motor current (range ±10V,

1V=2.15N).

• Key EXTERN START: Connects the control

signal provided at the socket CONTROLSIGNAL

INPUT to the servo amplifier of the motor. This

switch function is disabled when another

controller is enabled. Switching the key again

disconnects the signals.

• Key STOP: Pressing this key will disconnect the

input signals from the servo amplifier.

1.5 Connecting the System
Components and Start Up

Before setting up the system, please check whether your

mains supply provides a 230V, 50/60Hz voltage. Connect

the actuator to the mains supply and switch on the

actuator. The LED’s +15V, -15V, +5V, +35V and -35V

should light up now. Then switch off the actuator and

establish the lead connection between the actuator and the

mechanical system. Now switch on again the actuator.

Besides the LED’s mentioned above the LEDs "System"

Figure 1.2 : Front panel with denotations

Laboratory Experiment Ball and Beam BB50 Assembly and Start-Up

Assembly and Start-Up 1-3

and "Ready" should light up. After pressing the "Stop"

key, all LEDs should light up.

The system is now ready for operation.

An additional DC measuring instrument is required to

perform a function test. Connect this instrument the

terminal labelled "Position" on the panel section

"MONITOR". Switch on the lighting of the beam. Place

a ball on the beam and change its position by manually

taking the right end of the beam and manipulating its

angle. The displayed voltage measured by the instrument

should represent the ball position (range ±10V). The

monitor from option 500-06 may be used to overview the

camera signal. When the monitor is to be used, connect

the device to the corresponding monitor socket at the

actuator rear panel. The screen should now display the

beam with the ball and a black line. This black line

emphasizes the image row used to measure the ball

position. The black line should be located in the middle

of the beam and should end at the left side of the ball.

1.6 Manual Control

Please adjust the potentiometer "MANUAL" exactly to

its middle position and press the key "MANUAL

START". During pressing the key the LED "MANUAL"

will light up. In this state you may use the potentiometer

to carefully change the control signal (force) for the beam.

The control signal may be measured at the terminal

"CONTROL SIGNAL" (1V = 2,15N). Letting the key to

its original position will cause an actuator operation mode

as before pressing the key. Therefore manual system

control may be used to disturb a controller.

1.7 Control with External
Controller

The measured value of the ball position is provided at the

terminal "Position" (range ±10V). A quadrature

incremental encoder measures the beam angle and

provides its signals channel A and B at the terminals "INC

CHA" and "INC CHB" (360° = 20000 increments). Any

external controller has to be able to process such signals

and to perform a calibration of the angle zero. The output

of an external controller is to be connected to the terminal

"CONTROLSIGNAL INPUT" (range ±10V, 2.15 N/V).

The control signal is connected to the servo amplifier of

the beam motor after pressing the key "Start Extern". The

external control operation mode is terminated either after

pressing the key "Start Extern" again or by pressing the

key "Stop" on the panel section "CONTROLLER".

1.8 PC Control

Controlling the ball and beam system by a PC is described

in the chapter "Program Operation". To install the

controller program the installation program SETUP.EXE

from the enclosed CD is to be started with Windows

98SE, ME, 2000 or XP (arbitrary subdirectories may be

entered in the installation dialog). Following a successful

installation the controller program BB50W.EXE may be

started immediately.

1.9 Output Stage Release

If you use your own PC controller via the 37-pol.

connectors on the rear panel please think of the release of

the output stage. The output stage release is a safety

function so that in case of program failure the motor stops

immediately.

You need two digital signals for the output stage release.

DOUT1 (pin 31 of the 37-pol. connector X1) gets first a

high-level with pulse to low, duration 40 - 100 μs. After

going high DOUT2 (pin 32 of the 37-pol. connector X1)

needs within the next 100 ms a rect-signal in the range of

10 Hz and 1 kHz. (see fig. 1.3)

L

H

L

H

DO1

DO2

40 - 100 us

 max.
100 ms

Figure 1.3 : Signals for the output stage release

Assembly and Start-Up Laboratory Experiment Ball and Beam BB50

1-4 Assembly and Start-Up

1.10 Locating Errors

First try to eliminate problems with the help of the

following table. In case you cannot solve problems with

your BB50 by yourself, please contact us.

Problem Possible cause

The LEDs do not light up Check the connection to the mains supply

Check the fuses for the mains supply (rear panel)

LED + 35 V does not light up Check the fuse for "POWER SERVO"

LED - 35 V does not light up Check the fuse for "POWER SERVO"

LEDs + 15 V and - 15 V do not light up Check the fuse of the Power Supply

LED + 5 V does not light up Check the fuse of the Power Supply

LED "System" does not light up Check the lead connection between mechanical system and actuator

Selected controller cannot be enabled Check whether another controller, is enabled (LEDs on panel section

"SYSTEM STATUS")

Check LED "Ready" lights up

Laboratory Experiment Ball and Beam BB50 Assembly and Start-Up

Assembly and Start-Up 1-5

Assembly and Start-Up Laboratory Experiment Ball and Beam BB50

1-6 Assembly and Start-Up

Technical Data

Date: 29.06.2011

Laboratory Experiment Ball and Beam BB50 Technical Data

Technical Data

1 Technical Data 1-1

1.1 BB50 Mechanics, Drive, Sensors . 1-1

1.1.1 Dimensions and Weight of the BB50 Mechanics 1-1

1.1.2 The Drive . 1-1

1.1.3 The Incremental Encoder . 1-1

1.1.4 The Camera . 1-2

1.1.5 The Monitor (Option 500-06) . 1-2

1.2 Actuator . 1-2

1.2.1 SERVO MOTOR . 1-2

1.2.2 POWER SERVO . 1-2

1.2.3 Panel Section MONITOR . 1-3

1.2.4 POWER . 1-3

1.2.5 Panel Section CONTROLLER . 1-3

1.2.6 Rear Panel Connections . 1-4

Laboratory Experiment Ball and Beam BB50 Table of Contents

Technical Data i

Table of Contents Laboratory Experiment Ball and Beam BB50

ii Technical Data

1 Technical Data

1.1 BB50 Mechanics, Drive,
Sensors

1.1.1 Dimensions and Weight of the
BB50 Mechanics

Dimensions and Weight Value Unit

Length 1105 mm

Depth 215 mm

Height 1025 mm

Weight 18 kg

Dimensions and Weight

Ball

Value Unit

Diameter steal ball 40 mm

Weight steal ball 0,27 kg

Diameter Squash ball 37,5 mm

Weight Squash ball 0,025 kg

1.1.2 The Drive

Prinziple: The drive is a permanently exited DC motor

with ball bearings. The carriers of the graphite brushes are

accessible by opening the lateral plastic covers.

Drive

Type GNM3125

Value Unit

Rated voltage 24 V

Rated speed 3000 Rpm

Rated current 2 A

Rated power 30 W

Armature weight 0.19 kg

Motor weight 0.77 kg

Moment of inertia 0.177 kgcm2

Drive

Type GNM3125

Value Unit

Rated torque 9.6 Ncm

Starting torque 40.0 Ncm

Max. continous torque

during stillstand

10.5 Ncm

Friction torque 2.0 Ncm

Mechanical time constant 15.4 ms

Connected resistance 3.13 Ω

Armature inductance 3 mH

Armature resistance 2.6 Ω

Voltage constant 6.27 mV ⁄ 1⁄min

Torque constant 6.0 Ncm / A

max. peak current 16 A

Electrical time constant 0.96 ms

1.1.3 The Incremental Encoder

Incremental Encoder

Type RI58-D

Value Unit

Mode of attachment synchro

flange

Shaft diameter 10 mm

Max. speed

RI58-D 10000 Rpm

Torque <1 Ncm

Moment of inertia

RI58-D 0.014 kgcm2

Mass

RI58-D 0.36 kg

Resolution 5000 lines/rot.

Interface RS 422

Supply voltage 5 V

Impulse channels A/A;B/B;N/N

Impulse wave shape rectangle

Phase shift A/B 90 °

Index signal N/N 1 1/Rotation

Laboratory Experiment Ball and Beam BB50 Technical Data

Technical Data 1-1

1.1.4 The Camera

Camera Value Unit

Supply voltage 9-12 V

Power consumption 2 W

Output sig. level on 75 Ω 1 Vss

Horizontal resolution 420 lines

Sensitivity to light 0,05 Lux

Focal distance of lens f=3,6

F1,4

mm

Weight 20 g

Dimensions (B x H x T) 32 x 28,5 x 32 mm

Lighting (halogen) 2 x 20 (36°) W

1.1.5 The Monitor (Option 500-06)

Monochr. Monitor Value Unit

Picture tube 12,7 cm

Line termination 75 Ω

Working voltage 230 V~

Weight 1,4 kg

Dimensions (B x H x T) 190x143x245 mm

1.2 Actuator

Dimensions and weight Value Unit

Length 465 mm

Depth 308 mm

Height 150 mm

Weight 10 kg

Mains supply Value Unit

Input voltage 230 V

Frequency 50/60 Hz

Power consumption max. 140 W

Fuses S1 and S2 2 A T

1.2.1 SERVO MOTOR

Inputs Value Unit

Supply voltages +35

-35

V

V

Current consumtion 2 A

Control signal from

signal adaption unit
±10 V

Amplification 0.4 A/V

Time constant < 1 ms

Outputs Value Unit

Motor terminal

voltage
± 30 V

Current monitor for

signal adation unit

0.2 V/A

1.2.2 POWER SERVO

Inputs Value Unit

Supply voltages

Servo power unit

2*24 V~ V

Current consumption 2.5 A

Outputs Value Unit

Servo supply voltage ± 35,

2.5

V

A

Reset signal for enable

circuit

TTL signal

Technical Data Laboratory Experiment Ball and Beam BB50

1-2 Technical Data

1.2.3 Panel Section MONITOR

Measuring signals

(BNC Sockets)

Value Unit

Ball position from image

processing (Position)
± 10,

~25

V

V/m

Inkremental encoder

signal of beam angle

channel A (INC CHA)

TTL signal

20000

V

Inkr./Rot.

Inkremental encoder

signal of beam angle

channel B (INC CHB)

TTL signal

20000

V

Inkr./Rot.

Control signal for motor

servo (Control Signal)
± 10,

2,15

V

N/V

1.2.4 POWER

Mains supply Value Unit

Input voltage

2 primary fuses

230

200

V

mA T

Frequency 50/60 Hz

Output voltage ± 15

+5

V

V

1.2.5 Panel Section CONTROLLER

Input Value Unit

BNC socket Extern

Control Signal
± 10 V

Laboratory Experiment Ball and Beam BB50 Technical Data

Technical Data 1-3

1.2.6 Rear Panel Connections

Signal Bit for

Dout3

PC Plug-in card MF624 Pin

DenotationX1 (37pol. DSUB) X2 (37pol. DSUB)

Beam angle channel A 1 IRC0A+

beam angle channel A (inverted) 2 IRC0A-

Beam angle channel B 3 IRC0B+

Beam angle channel B (inverted) 4 IRC0B-

Ball position (analog signal, +/- 10V) 1 AIN0

/Stop left 0 12 DIN0

camera Bit 0 1

/Stop right 0 13 DIN1

camera Bit 1 1

/LED-Ready 0 14 DIN2

camera Bit 2 1

/PC-Ready 0 15 DIN3

camera Bit 3 1

camera Bit 8 0 16 DIN4

camera Bit 4 1

camera Bit 9 0 17 DIN5

camera Bit 5 1

camera Bit 10 0 18 DIN6

camera Bit 6 1

camera Bit 11 0 19 DIN7

camera Bit 7 1

AGND 9 AGND

Motor control signal 20 DA0

DGND 29 GND

Release circuit pulse 31 DOUT1

Release circuit rectangle 32 DOUT2

Camera control register 33 DOUT3

Camera hold 34 DOUT4

Technical Data Laboratory Experiment Ball and Beam BB50

1-4 Technical Data

Functional Description of the electrical Connections
between the Actuator and the PC Card MF624:

INC0 CHA (X2 Pin No. 1):

INC0 CHB (X2 Pin No. 3):

• These signals deliver the 4Q square wave signal of the

angle encoder to the PC adapter card. The decoding

of these signals is made on the MF624.

AIN0 (X1 Pin No. 1):

• This signal is the analog signal of the ball position

(+/-10V).

DIN0(X1 Pin No. 12):

• If the digital output ’camera control register’ is low,

this pin delivers the state of the left limit switch (low

== switch is actuated). This switch is used to

disconnect the motor if the beam is at its left limit

position.

• If the digital output ’camera control register’ is high,

this pin delivers the bit 0 of the 12 bit word for the

determination of the ball position.

DIN1(X1 Pin No. 13):

• If the digital output ’camera control register’ is low,

this pin delivers the state of the right limit switch (low

== switch is actuated). This switch is used to

disconnect the motor if the beam is at its right limit

position.

• If the digital output ’camera control register’ is high,

this pin delivers the bit 1 of the 12 bit word for the

determination of the ball position.

DIN2(X1 Pin No. 14):

• If the digital output ’camera control register’ is low,

this pin delivers the result of the system self test (low

== system is OK).

• If the digital output ’camera control register’ is high,

this pin delivers the bit 2 of the 12 bit word for the

determination of the ball position.

DIN3(X1 Pin No. 15):

• If the digital output ’camera control register’ is low,

this pin delivers the state of the output stage release

(low == system is released) (see also chapter 1.9 of

’Assembly and Start-Up’).

• If the digital output ’camera control register’ is high,

this pin delivers the bit 3 of the 12 bit word for the

determination of the ball position.

INC0 /CHA (X2 Pin No. 2):

• This signal is the inverted signal of INC0 CHA (X2

Pin No. 1).

INC0 /CHB (X2 Pin No. 4):

• This signal is the inverted signal of INC0 CHB (X2

Pin No. 3).

DIN4(X1 Pin No. 16):

• If the digital output ’camera control register’ is low,

this pin delivers the bit 8 of the 12 bit word for the

determination of the ball position.

• If the digital output ’camera control register’ is high,

this pin delivers the bit 4 of the 12 bit word for the

determination of the ball position.

DIN5(X1 Pin No. 17):

• If the digital output ’camera control register’ is low,

this pin delivers the bit 9 of the 12 bit word for the

determination of the ball position.

• If the digital output ’camera control register’ is high,

this pin delivers the bit 5 of the 12 bit word for the

determination of the ball position.

Laboratory Experiment Ball and Beam BB50 Technical Data

Technical Data 1-5

DIN6(X1 Pin No. 18):

• If the digital output ’camera control register’ is low,

this pin delivers the bit 10 of the 12 bit word for the

determination of the ball position.

• If the digital output ’camera control register’ is high,

this pin delivers the bit 6 of the 12 bit word for the

determination of the ball position.

DIN7(X1 Pin No. 19):

• If the digital output ’camera control register’ is low,

this pin delivers the bit 11 of the 12 bit word for the

determination of the ball position.

• If the digital output ’camera control register’ is high,

this pin delivers the bit 7 of the 12 bit word for the

determination of the ball position.

Pulse (enable servo) (X1 Pin No. 31):

Rectangle (enable servo) (X1 Pin No. 32):

• The functionality of these signals are described in

chapter 1.9 of ’Assembly and Start-Up’.

Camera control register (X1 Pin No. 33):

• With this digital output (as seen from the PC) the

functionality of the signals DIN0-DIN7 is switched

over.

Camera hold (X1 Pin No. 34):

• If this digital output is set to 0, the measurement

signals from the image processing unit will not be

updated. This is necessary because the reading of the

12 bit data word happens in two steps. An update of

the measurement signal between these readings would

cause errors.

Aout0 (X1 Pin No. 20):

• This analog output of the MF624 delivers the control

signal for the motor.

The image processing system for the position
measuring of the ball

It is sufficient to evaluate one single line of the picture

information from the camera because the ball position is

described by an one-dimensional value. This happens

inside the hardware of the BB50 system. The line which

has to be evaluated, will detect by means of a counter and

a comparator. In the beginning of the scanning of the

picture line a timer is started. This timer is stopped as soon

as the black ball is recognized on the white bar. The state

of the timer is copied into a buffer and transferred to the

PC. The timer value can linearly be mapped on the

distance which has to be measured because the system

was calibrated by means of the PC software. The position

of the picture line which has to be evaluated as well as the

threshold value for the detection of the ball will be

calibrated on the corresponding mechanic during the

manufacturing of the image processing system. This
calibration may not be changed. The position

measuring of the ball is continuously executed after

switching on the system. The updating of the data in the

output buffer can be stopped by the PC (camera hold).

System Connector

Pin-

No.

Reservation Pin-

No.

Reservation Pin-

No.

Reservation

a1 /CH B b1 CH B c1 n.c.

a2 /CH A b2 CH A c2 n.c.

a3 /Index b3 Index c3 n.c.

a4 Screen b4 /System c4 n.c.

a5 DGND b5 +5V D c5 n.c.

a6 /Stop left b6 /Stop right c6 n.c.

a7 AGND b7 +15V c7 n.c.

a8 PE b8 Video

signal

c8 n.c.

a9 Light b9 Light c9 n.c.

a0 Motor+ b0 Motor- c0 n.c.

Technical Data Laboratory Experiment Ball and Beam BB50

1-6 Technical Data

Mathematical Model of the System

Date: 14.03.1996

Laboratory Experiment Ball and Beam BB50 Mathematical Model of the System

Mathematical Model of the System

1 Mathematical Model of the Ball and Beam System 1-1

1.1 System Description Used for the Model . 1-1

1.2 Methods for Modelling . 1-2

1.3 The Lagrange Equations of 2. Kind . 1-2

1.3.1 Application on the Ball and Beam System . 1-3

1.4 State Space Description of the Non-linear Model . 1-6

1.5 Linearization of the State Space Description of the Nonlinear Model 1-8

1.6 References . 1-9

Laboratory Experiment Ball and Beam BB50 Table of Contents

Mathematical Model of the System i

Table of Contents Laboratory Experiment Ball and Beam BB50

ii Mathematical Model of the System

1 Mathematical Model of
the Ball and Beam
System

This chapter describes the mathematical modelling of the

system ball and beam. Here an application of the

Lagrange principle known from the analytical mechanic

is considered especially.

1.1 System Description Used
for the Model

The following denotations (see also figure 1.1) will be

used to derive the mathematical model.

The abbreviations have the following meaning:

m : mass of the ball

g : gravity

r : roll radius of the ball

Ib : inertia moment of the ball

Iw : inertia moment of the beam

M : mass of the beam

b : friction coefficient of the drive mechanics

K : stiffness of the drive mechanics

u(t) : force of the drive mechanics

l : radius of force application

lw : radius of beam

x ’ : ball co-ordinate with respect to the beam

y’ : ball co-ordinate with respect to the beam

ψ : angle of the ball to the beam

α : angle of the beam to the horizontal

A linear sliding friction in the drive mechanics is

observable during a rotation, which is described by the

friction coefficient b.

m g

m, Iw

x’

y’

K

α

l

b

m, Ib

lw
u(t)

Ψ

r

Figure 1.1: System elements for the Ball and Beam system

Laboratory Experiment Ball and Beam BB50 Mathematical Model of the Ball and Beam System

Mathematical Model of the System 1-1

The spring with the stiffness K takes into account the

delay behaviour of the driving belt which however may

be neglected in the realized laboratory setup. With this the

driving force u(t) is the input variable of the system.

Because the ball does not roll in the plane, but in a groove

(u-type profile, see figure 1.2), two different radius of the

ball have to be considered on setting up the motion

equations. One is the radius R of the ball the other is the

roll radius r, given by the distance from the middle of the

ball to the surface of the beam.

1.2 Methods for Modelling

At first the method of d’ Alembert would provide a

solution for the mathematical modelling of the mechanic

system on hand. Here balances of forces and moments of

inertia are used to establish the motion equations after

cutting free each single mass. Applying this method on

the ball and beam system will show problems when the

system is analyzed in more details.

According to figure 1.1 κ = 4 free co-ordinates

x ’ , y ’ , ψ and α are definable. The mechanical degree of

freedom f results with respect to Göldner and Holzweissig

(1989) from reducing the κ = 4 possible motions to f = 2.

Therefore the result are the following σ = κ − f = 2

constraint conditions, i.e. kinematic linkages:

x ’ = r ψ y ’ = l α .

A linkage results from reducing the degree of freedom of

a mechanic system. So the dynamic behaviour of the ball

is to be described in a moving reference system x ’, y’ and

with respect to a static co-ordinate system ξ , ζ (inertial

system). For this reason the formulation of the linear and

angular momentums is no longer simple (Frik 1994),

which increases the effort setting up the motion equations

considerably. In addition the reactions from cutting free

the masses are contained in the motion equations when

the d’ Alembert method is applied. Further more these

reactions are out of interest for the examination of the

dynamic behaviour of the ball and beam system.

The Lagrange method (Göldner, Holzweissig 1989)

however provides an alternative solution to establish the

motion equations without cutting free the masses. For this

reason the problem of the relative motion is reduced

considerably. This method is described in the following

section and is applied to the ball and beam system.

1.3 The Lagrange Equations of
2. Kind

The Langrange equations of 2. kind consider the energy

to result with the motion equations of an arbitrary

mechanic multiple-body system. To do this at first all

possible motions of the system have to be defined by the

free co-ordinates

xi , i = 1,..., κ (1.1)

with respect to predefined steady positions. In case of

geometric and/or kinematic links in a mechanic system

the number of co-ordinates required to describe the

motion is reduced by the number σ of constraint

conditions. The remaining co-ordinates are denoted as

generalized co-ordinates:

qj , j = 1,..., f . (1.2)

D

R

Rail

R

r

Figure 1.2: The different radius of the ball with
 respect to the rail of the beam

Mathematical Model of the Ball and Beam System Laboratory Experiment Ball and Beam BB50

1-2 Mathematical Model of the System

The number of independent generalized co-ordinates is

given by the degree of freedom f.

Therefore the κ free system co-ordinates xi may be

formulated as a function of the f generalized co-ordinates

qj as follows:

xi = xi (q1 , q2 ,..., qf , t), i = 1,..., κ (1.3)

where t denotes the explicit effect of the time.

With this altogether f independent variations

δ q1 ,..., δ qf (1.4)

are definable. Because the position vectors r_ depend on

the generalized co-ordinates qj, the virtual active part of

an external force is describable as follows:

δ W = F__ ⋅ δ r_ = ∑

j = 1

f

 F__ ⋅
 δ r_

 δ qj
 δ qj

 = ∑

j=1

f

 Qj δ qj . (1.5)

Qj are the generalized forces with respect to the

generalized co-ordinates. Qj is a force, when qj is a

distance. When Qj describes a moment, qj stands for an

angle. All the active forces and moments are to be

considered in Qj, than means the impressed and elastic

link forces.

Typical elastic link forces like linear spring forces or

potential forces are formulated as follows:

Qj = −
δ V
δ qj

 . (1.6)

where V denotes the potential of the impressed forces and

the elastic link forces.

The function L called Lagrange function may therefore be

defined by (Glödner , Holzweissig 1989):

L = T − V . (1.7)

T is the sum of the kinetic energies of each single rigid

body of the system. For the i-th rigid body the kinetic

energy is assembled by the translation of the i-th centre

of mass and the rotation of the i-th mass point around the

i-th centre of mass (Frik 1994):

Ti =
1
2

 mi vsi
2 +

1
2

 ωi Isi ωi . (1.8)

With this the Langrange equations of 2. kind are

formulated as:

d
d t

⎛
⎜
⎝

δ L

δ q
.
j

⎞
⎟
⎠
 −

δ L

δ qj
 = Q

__
j
 , j = 1,..., f . (1.9)

When Q
__

j contains dissipative forces (i.e. linear friction

forces) in addition, which reduce the system energy

during motion, Q
__

j may be stated as follows (Meirovitch

1970):

Q
__

j
 = Qj

∗ −
δ Υ
δ q

.
j

(1.10)

where

Υ : dissipative Rayleigh function

Qj
∗ : nondissipative potential-free generalized

 forces

Knowing the equation (1.9) the motion equations of the

mechanic system are obtained by differentiation with

respect to the generalized co-ordinates and with respect

to the time.

Laboratory Experiment Ball and Beam BB50 Mathematical Model of the Ball and Beam System

Mathematical Model of the System 1-3

1.3.1 Application on the Ball and
Beam System

According to section 1.2 the ball and beam system is

describable by κ = 4 free co-ordinates x ’ , y ’ , ψ and α
with σ = 2 constraint conditions:

x ’ = r ψ , y ’ = l α (1.11)

This leads to f = 2 independent variations. With respect to

the given sensors to measure the position of the ball x ’ as

well as the angle of the beam α for the state controller

δ q1 = δ x ’ variation of the position of the ball

δ q2 = δ α variation of the angle (1.12)

are selected.

Kinetic Energy of the System

The kinetic energy T is given by the following 2 portions:

Ball: Tb =
1
2

 m vs
2 +

1
2

 Ib ωb
2 (1.13)

Beam: Tw =
1
2

 Iw α
. 2 (1.14)

leading to

T = Tb + Tw . (1.15)

The velocity of the centre of mass vs as well as the angular

velocity ωb of the ball have to be defined as a function of

the generalized co-ordinates.

The figure 1.3 shows all the variables required to

formulate the velocity vs with respect to the inertial

system ξ , ζ. The following correlation is valid (Hagedorn

1990, Hering u.a. 1992):

v_ s = v_ ’ s + ω__ × r_ s . (1.16)

With the position vector r_ s = [− x’ , r]T with respect to

the relative system x’, y’ and

v_ ’ s =
d ’ r_ s

d t
 = [− x

.
 ’ 0]T

x’

ξ

y’

ζ

α

B

Ψ

A

r_s

O

r

Figure 1.3: The definition of the position vector of the ball

Mathematical Model of the Ball and Beam System Laboratory Experiment Ball and Beam BB50

1-4 Mathematical Model of the System

it follows for equation (1.16):

d r_ s
d t

 =
⎡
⎢
⎣

⎢
⎢

 −x
.
’

 0
 0

⎤
⎥
⎦

⎥
⎥
 +

⎡
⎢
⎣

⎢
⎢

 0
 0
 α
.

⎤
⎥
⎦

⎥
⎥
 ×

⎡
⎢
⎣

⎢
⎢

 −x’
 r
 0

⎤
⎥
⎦

⎥
⎥

 =
⎡
⎢
⎣

⎢
⎢

 −x
.
’ − α

.
 r

 −x’ α
.

 0

⎤
⎥
⎦

⎥
⎥
 . (1.17)

With this the ball velocity is formulated by

v s
2 = x

.
’2 + 2 x

.
’ α

.
 r + (α

.
 r)2 + (x’ α

.
)2 . (1.18)

An alternative determination of v s
2 is given by the two

differentiations

ξ
.
s
 =

d
d t

 (− x’ cos α − r sin α)

and

ζ
.
s
 =

d
d t

 (− x’ sin α + r cos α)

of the Cartesian components of the centre of the ball with

respect to the inertial system. Calculating its absolute

value results in the correlation from equation (1.18).

For the determination of the angular velocity ωb it is to be

considered that it is combined by the rotation of the ball

itself and the rotation of the beam. The current angular

velocity ω__ of a body executing two angle variations

d ϕ__1 and d ϕ__2 is given according to Frik (1994) by the

formulation ω__ = ω__1 + ω__2. For the ball and beam system

this leads to:

ωb = ψ
.
 + α

.

 =
x
.
’
r

 + α
.
 . (1.19)

Inserting Eq. 1.18 and Eq. 1.19 in Eq. 1.15 results in the

kinetic energy with respect to the generalized

co-ordinates:

T =
1
2

 (Iw α
. 2 + m (x

.
’2 + 2 x

.
’ α

.
 r + α

. 2 r2 + x’2 α
. 2)

 + Ib (x
.
’
r

 + α
.
)2) . (1.20)

ξ

S

ζ

α

S

x’

ybr

Figure 1.4: The potential energy of the ball

Laboratory Experiment Ball and Beam BB50 Mathematical Model of the Ball and Beam System

Mathematical Model of the System 1-5

Potential Energy of the System

The potential energy of the system is combined by the

following conservative portions:

1. the potential energy of the ball results in (see figure

1.4):

Vb = − m g yb = − m g x’ sin(α) . (1.21)

2. the potential energy of the driving spring:

Vf =
1
2

 K Δ y’2 =
1
2

 K l2 α2 . (1.22)

The Eq. 1.21 as well as Eq. 1.22 yield the potential energy

of the system:

V = Vb + Vf = − m g x’ sin(α) +
1
2

 K l2 α2 . (1.23)

Dissipative Forces of the System

The single dissipative force in the system is the linear

sliding friction of the driving mechanic:

FR = − b l α
.
 .

Therefore the dissipative Rayleigh function is given by:

Υ =
1
2

 b l2 α
. 2 . (1.24)

Generalized Forces of the System

The driving force u(t) is the only non-conservative force

in the given system. To determine the generalized force

the method of virtual active force (Göldner, Holzweissig

1989) is applied:

δ W = u_ ⋅ δ r_ = ⎡⎢
⎣

 0
 u(t)

⎤
⎥
⎦
 ⋅ ⎡⎢

⎣

 0
 l cos(α) δ α

⎤
⎥
⎦

 = u(t) l cos(α) δ α = Qα
∗ δ α + Qx’

∗ δ x’ .

(1.25)

Comparing the coefficients leads to the generalized

force:

Qα
∗ = u(t) l cos(α) ; Qx’

∗ = 0 . (1.26)

Motion Equations of the System

Now all the components of the Langrange equation (see

Eq. 1.9) are known. To derive the motion equations only

the differentiations with respect to the two generalized

co-ordinates from Eq. 1.12 and with respect to the time

are to be calculated. This results in the two following

coupled non-linear differential equations for the

generalized co-ordinates x’and α:

(m +
Ib

r2) x
..
 ’ + (m r2 + Ib)

1
r

 α
..

 − m x’α
. 2

 = m g sin(α) (1.27)

(m x’2 + Ib + Iw) α
..

 + (2 m x
.
’ x’ + b l2) α

.

+ K l2 α + (m r2 + Ib)
1
r

 x
..
 ’ − m g x’ cos(α)

= u(t) l cos(α) (1.28)

Eq. 1.27 is the equation for the motion of the ball and Eq.

1.28 is the equation for the motion of the beam.

In the following section the general non-linear state space

description of the system is derived from the equations

1.27 and 1.28.

1.4 State Space Description of
the Non-linear Model

The general form of a state space description of an

arbitrary dynamic system is given as follows (Föllinger

1994):

x
.
_ = f_ (x_ (t) , u_ (t) , t) (1.29)

y_ = g_ (x_ (t) , u_ (t) , t) (1.30)

Mathematical Model of the Ball and Beam System Laboratory Experiment Ball and Beam BB50

1-6 Mathematical Model of the System

To simplify the equations the following abbreviations are

introduced:

a1 = m +
Ib

r2

a2 = (m r2 + Ib)
1
r

a3 = m g

b1 = Ib + Iw

b2 = 2 m

b3 = b l2

b4 = K l2

b5 = (m r2 + Ib)
1
r

b6 = m g . (1.31)

With these abbreviations it follows for Eq. 1.27:

a1 x
..
 ’ + a2 α

..
 − m x’α

. 2 = a3 sin(α) (1.32)

and for Eq. 1.28:

(m x’2 + b1) α
..

 + (b2 x
.
 ’ x’ + b3) α

.
 + b4 α

 + b5 x
..
 ’ − b6 x’ cos(α) = u(t) l cos(α) . (1.33)

To obtain the state space description Eq. 1.33 is solved

for α
..

 at first.

α
..

 =
− (b2 x

.
’ x’ + b3) α

.
 − b4 α − b5 x

..
 ’

m x’2 + b1

+
b6 x’ cos(α) + u(t) l cos(α)

m x’2 + b1

 . (1.34)

Inserting Eq. 1.34 in Eq. 1.32 and solving the result for

x
..
 ’ yields:

x
..
 ’ =

a2 [(b2 x
.
’ x’ + b3) α

.
 + b4 α − b6 x’cos(α)]

a1 (m x’2 + b1) − a2 b5

 +
(m x’2 + b1) (a3 sin(α) + m x’α

. 2)
a1 (m x’2 + b1) − a2 b5

 −
a2 l cos(α) u(t)

a1 (m x’2 + b1) − a2 b5

 . (1.35)

x
.
1 = x2 Eq. 1.37

x
.
2 =

a2 [(b2 x1 x2 + b3)x4 + b4 x3 − b6 x1cos(x3)] + (m x1
2 + b1) (a3 sin(x3) + m x1 x4

2) − a2 l cos(x3) u(t)

a1 (m x1
2 + b1) − a2 b5

Eq. 1.38

x
.
3 = x4 Eq. 1.39

x
.
4 =

− (b2 x1 x2 + b3) x4 − b4 x3 + b6 x1cos(x3)

m x1
2 + b1

 −
b5 (a3 sin(x3) + m x1 x4

2)

a1 (m x1
2 + b1) − a2 b5

 −
a2 b5 [(b2 x1 x2 + b3) x4 + b4 x3 − b6 x1 cos(x3)]

(m x1
2 + b1) (a1 (m x1

2 + b1) − a2 b5)

 +
⎛
⎜
⎝
 1 +

a2 b5

a1 (m x1
2 + b1) − a2 b5

⎞
⎟
⎠

l cos(x3) u(t)

m x1
2 + b1

Eq. 1.40

Figure 1.5: The nonlinear state space description

Laboratory Experiment Ball and Beam BB50 Mathematical Model of the Ball and Beam System

Mathematical Model of the System 1-7

Now Eq. 1.35 is inserted in Eq. 1.34. The result is solved

for α
..

 yielding:

α
..

 =
− (b2 x

.
’ x’ + b3) α

.
 − b4 α + b6 x’cos(α)

m x’2 + b1

 −
b5 (a3 sin(α) + m x’ α

. 2)
a1 (m x’2 + b1) − a2 b5

 −
a2 b5 [(b2 x

.
’ x’ + b3) α

.
 + b4 α − b6 x’cos(α)]

(m x’2 + b1) (a1 (m x’2 + b1) − a2 b5)

 +
⎛
⎜
⎝
 1 +

a2 b5

a1 (m x’2 + b1) − a2 b5

⎞
⎟
⎠

l cos(α) u(t)

m x’2 + b1

 .

(1.36)

Now the state space description is defined as follows:

x1 = x’ Position of the ball

x2 = x
.
’ Velocity of the ball

x3 = α Angle of the beam

x4 = α
.
 Angular velocity of the beam

With these denotations and Eq. 1.35 resp. Eq. 1.36 one

obtains the nonlinear state space description of the ball

and beam system as shown in figure 1.5.

1.5 Linearization of the State
Space Description of the
Nonlinear Model

The concept of a state control applied on the ball and beam

system requires a linear plant model. This section

describes the linearization of the equations 1.37-1.40

around an operating point x_0 , u0 by deriving a Taylor

series which is truncated after the first term. The operating

point is selected as follows:

 x_0 =

⎡

⎢

⎣

⎢

⎢

 x10

 0
 0
 0

⎤

⎥

⎦

⎥

⎥
 , u0 . (1.41)

Near to the operating point the following approximation

is valid in addition:

sin(x3) ≈ x3 , cos(x3) ≈ 1 . (1.42)

Ackermann (1988) states the following formulation for

small deviations x_0 , u0 :

x
.
_ = A__0 x_ + b_0 u (1.43)

with

A__0 =
δf_
δx_

 | x
0
 , u

0
 , b_0 =

δf_
δu

 | x
0
 , u

0
 . (1.44)

Calculating the differential quotients results in a

linearized system matrix A__ of the ball and beam system

with the following component filling:

A__ =

⎡

⎢

⎣

⎢

⎢

 0

 A21

 0

 A41

 1

 0

 0
 0

 0

 A23
 0

 A43

 0

 A24

 1

 A44

⎤

⎥

⎦

⎥

⎥
(1.45)

and for the control matrix b_:

b_ =

⎡

⎢

⎣

⎢

⎢

 0
 B2

 0
 B4

⎤

⎥

⎦

⎥

⎥
 . (1.46)

The components of the A__-matrix are defined as shown in

figure 1.6.

The b_-matrix is combined by the components

B2 = −
a2 l

(a1 (m x10
2 + b1) − a2 b5)

(1.53)

B4 =
⎛
⎜
⎝
 1 +

a2 b5

(a1 (m x10
2 + b1) − a2 b5)

⎞
⎟
⎠

l

m x10
2 + b1

(1.54)

The output matrix C__ of the system is given by

Mathematical Model of the Ball and Beam System Laboratory Experiment Ball and Beam BB50

1-8 Mathematical Model of the System

C__ = ⎡⎢
⎣
 1
 0

 0
 0

 0
 1

 0
 0

⎤
⎥
⎦

(1.55)

It is noted at this point that the position of the ball x1 as

well as the angle of the beam x3 are measurable system

signals.

With this the linear state space description

x
.
 = A__ x + b_ u , x_(t0) = x0 (1.56)

y_ = C__ x_ (1.57)

is defined. The following chapter will describe the design

of the state control.

1.6 References

/1/ : J.Ackermann :

Abtastregelung, Springer - Verlag, Berlin

1972

/2/ : O. Föllinger :

Regelungstechnik, Hüthig - Verlag,

Heidelberg 1994

/3/ : M.Frick :

Mechanik III, Vorlesungssript, Uni-GH

Duisburg FB 7, Duisburg 1994

 A21 =
 − a2 b6 (a1 (m x10

2 + b1) − a2 b5) + 2 m a1 a2 x10 (b6 x10 + l u0)

(a1 (m x10
2 + b1) − a2 b5)2 (1.47)

 A23 =
a3 (m x10

2 + b1) + a2 b4

a1 (m x10
2 + b1) − a2 b5

(1.48)

 A24 =
a2 b3

(a1 (m x10
2 + b1) − a2 b5)

(1.49)

 A41 =
b6 (− m x10

2 + b1)

(m x10
2 + b1)2 −

⎡
⎢
⎣

⎢
⎢
 1 + a2 b5

2 a1 m x10
2 + 2 a1 b1 − a2 b5)

(a1 (m x10
2 + b1) − a2 b5)2

⎤
⎥
⎦

⎥
⎥

2 m l x10 u0

(m x10
2 + b1)2

 − a2 b5 b6

m x10
2 (3 a1 m x10

2 + 2 a1 b1 − a2 b5) + b1 (− a1 b1 + a2 b5)

[(m x10
2 + b1) (a1 (m x10

2 + b1) − a2 b5)]2
(1.50)

 A43 = −
b4

m x10
2 + b1

 −
a3 b5

a1 (m x10
2 + b1) − a2 b5

 −
a2 b4 b5

(m x10
2 + b1) (a1 (m x10

2 + b1) − a2 b5)
(1.51)

 A44 = − b3 ⎛⎜
⎝

1

(m x10
2 + b1)

 +
a2 b5

(m x10
2 + b1) (a1 (m x10

2 + b1) − a2 b5)
⎞
⎟
⎠
 . (1.52)

Figure 1.6: The linear state space description

Laboratory Experiment Ball and Beam BB50 Mathematical Model of the Ball and Beam System

Mathematical Model of the System 1-9

/4/ : H. Göldner und F. Holzweissig :

Leitfaden der technischen Meschanik,

VEB Fachbuch - Verlag, Leipzig 1989

/5/ : P. Hagedorn :

Technische Meschanik III, Harri Deutsch -

Verlag, Frankfurt a. M. 1990

/6/ : E. Hering u. a :

Physik für Ingenieure, VDI - Verlag,

Düsseldorf 1992

/7/ : L. Meirovith :

Methods of Analytical Dynamics,

McGraw-Hill, Inc., New York 1970

Mathematical Model of the Ball and Beam System Laboratory Experiment Ball and Beam BB50

1-10 Mathematical Model of the System

Theoretical Background of the State
Controller

Date: 17.03.1997

Laboratory Experiment Ball and Beam BB50 Theoretical Background of the State Controller

Theoretical Background of the State Controller

1 Controller Design in the State Space 1-1

1.1 State Equations of Sampled Data Systems . 1-1

1.2 Sampled Data Control with Feedback of the State Vector 1-2

1.2.1 Calculation of the Controller Feedback Matrix 1-3

1.3 State Observers . 1-5

1.3.1 The Luenberger Observer . 1-5

1.3.2 Reduced Order Observer . 1-7

1.4 State Observer in the Control Loop . 1-8

1.5 Disturbance Observer . 1-9

1.6 References . 1-10

2 Realization of the State Controller 2-1

2.1 Model Parameters for the Ball and Beam System . 2-1

2.2 Linear State Space Model . 2-2

2.3 Design of the State Controller . 2-2

2.3.1 Eigenvalues of the Ball and Beam System . 2-2

2.3.2 Controller Design Using Pole Placement . 2-2

2.4 Design of Reduced Order State Observer . 2-4

2.5 Design of a Disturbance Observer . 2-5

2.6 Filtering the Camera Signal for the Ball Position . 2-7

Laboratory Experiment Ball and Beam BB50 Table of Contents

Theoretical Background of the State Controller i

Table of Contents Laboratory Experiment Ball and Beam BB50

ii Theoretical Background of the State Controller

1 Controller Design in
the State Space

This chapter describes the theoretical backgrounds of a

state controller design. At first it goes into the state space

description of linear sampled data systems.

1.1 State Equations of Sampled
Data Systems

In the following it is assumed that the vector differential

equation of the linear time-invariant system is known. In

this case the state and output equations are stated as (Frank

1994a):

x_
.
(t) = A__ x_(t) + B__ u_(t) , x_(t0) = x_0 (1.1)

y_ (t) = C__ x_ (t) + D__ u_ (t) . (1.2)

Where

u_ (t) =

⎡

⎢

⎣

⎢
⎢
⎢
⎢
⎢
⎢

 u1(t)
⋅
⋅
⋅

 up(t)

⎤

⎥

⎦

⎥
⎥
⎥
⎥
⎥
⎥

(1.3)

is the input resp. control vector,

x_ (t) =

⎡

⎢

⎣

⎢
⎢
⎢
⎢
⎢
⎢

 x1(t)
⋅
⋅
⋅

xn(t)

⎤

⎥

⎦

⎥
⎥
⎥
⎥
⎥
⎥

(1.4)

is the state vector and

y_ (t) =

⎡

⎢

⎣

⎢
⎢
⎢
⎢
⎢
⎢

 y1(t)
⋅
⋅
⋅

 yq(t)

⎤

⎥

⎦

⎥
⎥
⎥
⎥
⎥
⎥

(1.5)

is the output vector of the system. Furthermore one calls

the (n × n)-matrix A__ the system matrix, the (n × p) -matrix

B__ the control matrix, the (q × n)-matrix C__ the output

matrix and the (q × p)-matrix D__ the feed through matrix.

The general solution of the state differential equation

results by means of the Laplace transformation in (Frank

1994a):

x_ (t) = Φ__(t − t0) x_ (t0) + ∫ Φ__ (t − τ) B__ u_ (τ) d τ
t
0

t

(1.6)

with the matrix function

Φ__ (t) = e A__ t = ∑

ν = 0

∞
(A__ t)

ν

ν !
 , (1.7)

called fundamental or transition matrix. The state

description of linear sampled data systems can be

computed from Eq. 1.6 and Eq. 1.7 when the input signal

is a piecewise constant time function (Isermann 1987)

u_ (t) = u_ (k T) , k T ≤ t ≤ (k + 1) T. (1.8)

By integration over the sampling period T one obtains for

the state vector at time (k + 1) T:

x_ ((k + 1) T) = A__D (T) x_(k T) + B__D (T) u_ (k T)

(1.9)

with the abbreviations

A__D (T) = Φ__ (T) = e A__ T (1.10)

and

B__D (T) = ∫
0

T
A__D (τ) B__ d τ . (1.11)

Accordingly, the output equation of the sampled data

system becomes:

Laboratory Experiment Ball and Beam BB50 Controller Design in the State Space

Theoretical Background of the State Controller 1-1

y_(k T) = C__ x_(k T) + D__ u_(k T) . (1.12)

In figure 1.1 the block diagram of the sampled data system

according to Eq. 1.9 and Eq. 1.12 is displayed.

The solution of Eq. 1.9 is obtained by recursive

computation of the state variables at the time (k + 1) T
using the input and state variables at time k T.

When the eigenvalues of the matrix A__D are located inside

the unit circle of the z-plane, the system is stable.

Analogously to continuous time systems, the eigenvalues

can be computed from the roots of the characteristic

equation (Isermann 1987):

det (z I_ − A__D) = 0 . (1.13)

If the eigenvalues of the continuous time systems are

already known, the transformation

zi = e T λ
i , i = 1,..., n (1.14)

yields the location of the eigenvalues inside the z-plane.

When a system description is given in the state space, the

control is realizable by a feedback of all the state variables

to the system input introducing the problem of selecting

suitable feedback coefficients. There are two different

possibilities to solve the mentioned problem (Frank

1994b):

1. Prescribing the dynamic behaviour by selecting

locations for the poles of the closed loop system (pole

placement).

2. Optimization of a quality criterion (optimum control).

The following section will describe the first method.

1.2 Sampled Data Control with
Feedback of the State Vector

It is assumed in the following that a system description

according to Eq. 1.9 and Eq. 1.12 is given. If the system

is controllable meaning that

Rang ⎡
⎣
B__D A__D B__D … A__D

n − 1 B__D⎤
⎦
 = n (1.15)

is valid a state control using pole placement is realizable.

The general structure of a sampled data control system is

depicted in figure 1.2. The controller is realized by the

state feedback

u_R (k T) = − F__ x_ (k T). (1.16)

The design of the state controller using pole placement

requires that the complete state vector x_ is known. When

this vector is not measurable completely, the missing state

variables have to be determined by further algorithms

++ +

+u__ (k T)

D__

I_
z

C__
x_ (kT)x_ ((k+1)T) y_ (kT)

A__D

B__D

Figure 1.1 : Block diagram of a sampled data system

Controller Design in the State Space Laboratory Experiment Ball and Beam BB50

1-2 Theoretical Background of the State Controller

called observers. The following section 1.3 will deal with

this problem. Here it is assumed at first that all the state

variables are measurable.

The constant controller coefficients of the feedback

matrix F__ are to be selected such that the poles of the open

loop system are shifted to stable locations. When the

number of inputs is equal to the number of outputs p = q,

a prefilter given by the matrix V__ ensures that the output

vector y_ is equal to the reference vector w__ in steady state

conditions. According to figure 1.2 and with

u_ (k T) = V__ w__ (k T) − F__ x_ (k T) (1.17)

the system description of the closed control loop is given

by:

x_((k + 1) T) = (A__D − B__D F__) x_ (k T) + B__D V__ w__ (k T)

(1.18)

y_(k T) = (C__ − D__ F__) x_ (k T) + D__ V__ w__ (k T) .
(1.19)

Comparing the equations 1.9 and 1.12 yields the relations

between the open and the closed control loop as follows:

A__D
B__D
C__
D__

→
→
→
→

A__D − B__D F__
B__D V__
C__ − D__ F__
D__ V__

 . (1.20)

Analogously to Eq. 1.13 the stability behaviour of the

closed loop system can be evaluated by considering the

eigenvalues of the new system matrix. The eigenvalues

λR i , i = 1,..., n can be computed from the characteristic

equation

det [z I_ − (A__D − B__D F__)] = 0. (1.21)

1.2.1 Calculation of the Controller
Feedback Matrix

Several methods (Ackermann 1988, Föllinger 1990,

Frank 1994b and Isermann 1987) are known to compute

the matrix F__. Here only two methods are described in

detail. It is assumed in the following that the system has

only one input signal (p = 1). In this case, the n

components of the feedback matrix F__ = f_ T can be

determined uniquely by assignment of the eigenvalues of

the closed loop (Frank 1994b).

I_
z

A__D

C__

x_ (kT)x_ ((k+1)T) y_ (kT)

B__D

D__

F__

V__

u__ (k T)

w__ (k T)
+

- +
+ +

+

u__ R (k T)

Figure 1.2 : Sampled data control loop with state feedback

Laboratory Experiment Ball and Beam BB50 Controller Design in the State Space

Theoretical Background of the State Controller 1-3

Pole placement with preassigned characteristic poly-
nomial

The eigenvalues λR 1 ,..., λR n of the closed loop are

preassigned. Then the characteristic polynomial is given

by

P (z) = zn + pn − 1 zn − 1 + pn − 2 zn − 2 + …+p0

(1.22)

A following comparison of the coefficients with

det [z I_ − (A__D − b_D f_ T)] = 0 (1.23)

results in the desired feedback vector.

Pole placement using the Ackermann equation

If the system is described in an arbitrary form and if it is

controllable in addition the feedback vector is determined

for an assigned characteristic polynomial according to Eq.

1.22 from the following relation:

f_ T = p0 q_ s
T + … + pn−1 q_ s

T A__ D
n−1 + q_ s

T A__ D
n . (1.24)

The term q_ s
T is here the last row of the inverse control-

lability matrix

Q__ s
−1 = ⎡

⎣
b_D A__D b_D … A__ D

n−1 b_D⎤
⎦
 −1 . (1.25)

Eq. 1.24 is known from the literature as the Ackermann

equation.

Determination of the prefilter

To determine the matrix V__ it is assumed in the following

1. The matrix F__ = f_ T is known already.

2. The feed through matrix D__ = 0, which is the case for

most of the real systems.

Transforming the equations 1.18 and 1.19 into the

z-domain yields:

z X__(z) = (A__D − B__D F__) X__(z) + B__D V__ W__(z) (1.26)

and

Y__(z) = C__ X__(z) . (1.27)

Solving Eq. 1.26 for X__(z) and substituting the result in Eq.

1.27 results in

Y__(z) = C__ (z I_ − A__D + B__D F__)
−1

 B__D V__ W__ (z)

 = G__ (z) W__ (z) . (1.28)

In this equation the term G__ (z) denotes the z-transfer

function of the system. In the steady state the output

vector can be computed by the final value theorem to

y_(+ ∞) = lim
z→1

 [(z − 1) G__ (z) W__ (z)]

= G__ (1) lim
z→1

 [(z − 1) W__ (z)]

= G__ (1) w__ (+ ∞) (1.29)

In order for the output to be equal to the setpoint in the

steady state (y_ = w__), it must be required for the Z-transfer

function

G__ (1) = I_ . (1.30)

This condition yields together with Eq. 1.28 the desired

relation for the prefilter V__

 V__ = [C__ (I_ − A__D + B__D F__)
−1

 B__D]
−1

 . (1.31)

Now all the matrices of the state controller are

determined. The next section will describe how state

variables which cannot be measured are reconstructed by

means of observers.

Controller Design in the State Space Laboratory Experiment Ball and Beam BB50

1-4 Theoretical Background of the State Controller

1.3 State Observers

In the previous chapter 1.2 different methods to determine

the feedback matrix F__ of a state control have been

described. There it was assumed that the state vector of

the system is known. In practice however, it is often very

costly or altogether impossible to determine the state

vector x_ by measurements. By means of state observers

however, it is possible, to reconstruct the states of the

system using the input and output signals. The use of state

observers is always possible for observable systems, i.e.

the following relation has to be valid (Frank 1994b):

Rang ⎡⎣C__T A__D
T C__T … (A__D

T)n−1 C__T⎤
⎦ = n . (1.32)

At first the Luenberger observer will be described shortly

to get a better understanding of a reduced order observer

applied on the ball and beam system.

1.3.1 The Luenberger Observer

The background of this observer can be derived by the

block diagram from figure 1.3. The difference between

the measured output vector y_ and the output vector of the

model y_̂ = C__ x_̂ is feed back via the matrix F__B to the input

of the model. The matrix F__B is to be determined such that

the following relation for the estimation error e_(k T) is
valid for arbitrary initial states x_0 , x_̂0:

lim
k→∞

 e_(k T) = lim
k→∞

 (y_(k T) − y_̂(k T)) ≡ 0 . (1.33)

For a system described as

x_((k + 1) T) = A__D x_(k T) + B__D u_(k T) , x_(0) = x_0

(1.34)

u__ (k T)

+

B__D

A__D

x_((k+1)T)
I_
z

I_
z

C__

C__B

F__B

B__B

A__B

x_(kT) y_(kT)

ŷ_(kT)

x̂_(kT)

x̂_(kT)

Luenberger observer

+

+
+

+

+

−

Figure 1.3 : Block diagram of the Luenberger state observer

Laboratory Experiment Ball and Beam BB50 Controller Design in the State Space

Theoretical Background of the State Controller 1-5

y_(k T) = C__ x_(k T) (1.35)

a Luenberger observer is formulated as a dynamic system

with the differential state equation

x_̂ ((k + 1) T) = (A__D−F__B C__) x_̂ (k T) + B__D u_(k T)

 +F__B y_(k T) . (1.36)

Eq. 1.33 is valid if and only if the eigenvalues of the

system matrix A__B of the observer

A__B = A__D − F__B C__ (1.37)

are located inside the unit circle of the z-plane. The

eigenvalues are determined from the characteristic

equation

det [z I_ − A__D + F__B C__] = 0 . (1.38)

One method to determine the observer parameters is to

transpose the dynamic matrix according to Eq. 1.37 and

to design a fictitious state controller (Föllinger 1994). For

the following methods it is assumed that the system is a

single input-single output system (q = 1).

Pole placement by a preassigned characteristic
equation

Here the eigenvalues λB 1 ,..., λB n of the observer are

preassigned. The characteristic polynomial is given by

PB (z) = z n + pn − 1 z n − 1 + pn − 2 z n − 2 + … + p0

(1.39)

A comparison of the coefficients with Eq. 1.38 results in

the desired feedback vector of the observer.

Pole placement using the Ackermann equation

When Eq. 1.38 is written in the form

det [z I_ − (A__D − f_B c_T)]T

= det [(z I_)T − (A__D − f_B c_T)T]

 = det [z I_ − (A__D
T − c_ f_B

T)] , (1.40)

a comparison with Eq. 1.23 yields the following relations:

A__D

b_D

f_T

→
→
→

A__D
T

c_
F__B

T
 . (1.41)

With this the observer parameters are determined as

follows:

If the system is described in an arbitrary form and

provided the system is observable the feedback matrix

f_B is determined for a preassigned characteristic

polynomial according to Eq. 1.39 from the following

relation:

f_B = (p0 q_B
T + … + pn − 1 q_B

T (A__ D
T)n − 1 + q_B

T (A__ D
T)n)T

= (p0 q_B + … + pn − 1 A__ D
n − 1 q_B + A__ D

n q_B) .

(1.42)

Where the term q_B denotes the last column of the

observabilty matrix

Q__ B
−1 =

⎡

⎢

⎣

⎢
⎢
⎢
⎢
⎢

⎢
⎢
⎢
⎢
⎢

c_T

c_T A__D

⋅

⋅

⋅

c_T A__ D
n − 1

⎤

⎥

⎦

⎥
⎥
⎥
⎥
⎥

⎥
⎥
⎥
⎥
⎥

−1

 . (1.43)

For a system with multiple output signals the observer

matrix can no longer be determined uniquely. In this case

additional conditions besides the observer poles are to be

assigned (Föllinger 1994).

In was already noted in the chapter modelling that two of

the four state variables (ball position x1 and beam angle x3)

are measured from the BB50 laboratory setup. According

Controller Design in the State Space Laboratory Experiment Ball and Beam BB50

1-6 Theoretical Background of the State Controller

to Föllinger (1994) only n − q state variables are to be

reconstructed by the observer when q state variables are

known from measurements. So a reduced order observer

is sufficient in this case offering the advantage that the

estimated signals converge faster to the real values. The

following section will describe the design of a reduced

order observer.

1.3.2 Reduced Order Observer

The initial consideration is to introduce the measured

signals as state variables (Isermann 1987). The state

vector x_ becomes

x_ =
⎡
⎢
⎣

 y_(k T)
 x_̂B(k T)

⎤
⎥
⎦

(1.44)

where x_̂B (k T) denotes the vector containing the state

variables which cannot be measured. Then it follows from

Eq. 1.9

⎡
⎢
⎣

 y_ ((k + 1) T)
 x_̂B ((k + 1) T)

⎤
⎥
⎦
 =

⎡
⎢
⎣

 A__11

 A__21

 A__12

 A__22
⎤
⎥
⎦

⎡
⎢
⎣

 y_(k T)
 x_̂B (k T)

⎤
⎥
⎦

 +
⎡
⎢
⎣

 B__1

 B__2
⎤
⎥
⎦
 u_(k T) (1.45)

which becomes after some conversions:

x̂_B ((k + 1) T) = A__22 x̂_B (k T) + [A__21 y_(k T) + B__2 u_(k T)]
(1.46)

y_((k + 1) T) − A__11 y_(k T) − B__1 u_(k T) = A__12 x̂_B (k T) .

(1.47)

Considering that the term x̂_B denotes the desired vector

and that

y_((k + 1) T) − A__11 y_(k T) − B__1 u_(k T)

is a known vector then this relation may be formulated in

a typical state space description according to Eq. 1.34 and

Eq. 1.35. This results in:

x_(k T) → x̂_B (k T)

A__D → A__22

B__D u_(k T) → A__21 y_(k T) + B__2 u_(k T)

y_(k T) → y_((k + 1) T) − A__11 y_(k T) − B__1 u_(k T)

C__ → A__12 . (1.48)

Using these relations and the observer equation 1.36 to

design a reduced order observer it follows:

x̂_B ((k + 1) T) = (A__22 − L__B A__12) x̂_B (k T) + A__21 y_(k T)

 + B__2 u_(k T) + L__B [y_((k + 1) T)

− A__11 y_(k T) − B__1 u_(k T)] . (1.49)

In Eq. 1.49 the right side however still contains the vector

y_((k + 1) T) which is unknown at time k T. Substituting

the vector x̂_B by the observer state variables

η__(k T) = x̂_B (k T) − L__B y_(k T) (1.50)

in Eq. 1.49 results in the observer equation which

corresponds to the equations 1.46 and 1.47 of the reduced

system:

η__((k + 1) T) = (A__22 − L__B A__12) η__(k T)

+ [(A__22 − L__B A__12) L__B + A__21 − L__B A__11] y_(k T)

+ (B__2 − L__B B__1) u_(k T)

= A__B η__(k T) + F__B y_(k T) + B__B u_(k T)

(1.51)

where the estimated state variable x̂_B can be calculated

from:

x̂_B (k T) = η__(k T) + L__B y_(k T) . (1.52)

Here the following relations are valid:

A__B = A__22 − L__B A__12

F__B = A__B L__B + A__21 − L__B A__11

B__B = B__2 − L__B B__1 . (1.53)

Laboratory Experiment Ball and Beam BB50 Controller Design in the State Space

Theoretical Background of the State Controller 1-7

The elements of the observer matrix L__B can be determined

according to the method described in section 1.3.1 by

substituting the corresponding relations in Eq. 1.40 and

Eq. 1.42.

1.4 State Observer in the
Control Loop

Up to now the observer was considered as a single

dynamic system providing the complete state of a system

with respect to its input and output signals. The next step

is to include the observer in a state control, i. e. to provide

the controller from section 1.2 with the estimated state

vector. Figure 1.4 displays the corresponding block

diagram with an reduced order observer. The output

matrices C__B and V__B combine the state vector x_ according

to the design of the controller and observer. At this point

it is to be considered if the dynamic of the closed control

loop is modified after inserting the dynamic system

observer, i. e. if the eigenvalues λR 1,..., λR n as assigned

during the controller design were shifted to undesired

locations. It is relatively easy to show (Frank 1994b) that

this shifting does not occur, instead the observer

eigenvalues are only added to the eigenvalues of the

closed loop without an observer. In case the system is

controllable and observable the eigenvalues

λB i , i = 1,..., n − q of the reduced order observer as well

as the eigenvalues λR i , i = 1,..., n are assignable

separately at arbitrary locations (see also Föllinger 1994).

The following section will describe a method to estimate

an additional disturbance signal zS which cannot be

measured by using a disturbance observer.

f_T

⎡
⎢
⎣

y_ (k T)
x_̂ (k T)

⎤
⎥
⎦

V

+

I_
z

A__B

V__B

x_̂ (kT) x_̂ ((k+1)T)

C__B

B__B

F__B
+

+
+

+

reduced order observer

System
w (kT) y_(kT)

−

Figure 1.4 : Block diagram of the controlled system with state feedback and reduced order observer

Controller Design in the State Space Laboratory Experiment Ball and Beam BB50

1-8 Theoretical Background of the State Controller

1.5 Disturbance Observer

The previous sections did not consider disturbance effects

which are active over a longer period of time. Only the

initial vector x_0 may be taken as a disturbance signal. It is

therefore required to consider in addition disturbance

signals acting on real plants. According to Föllinger

(1994) this may be realized by two different methods:

1. Extending the method of feeding forward the

disturbance signal for the state space.

2. Transferring the classical PI controller structure to the

state space.

The following will describe the first method in case of a

disturbance signal which cannot be measured.

A homogeneous differential equation may be formulated

to estimate an unknown disturbance signal zS described

only by a poor knowledge of its shape. The disturbance

signal is generated by random initial conditions of this

equation. With this method the signal zS is combined by

a stochastic portion with respect to the unknown initial

conditions and a deterministic portion represented by the

typical signal shape resulting from the homogeneous

differential equation. Converting this formulation to the

standard state space description results in the discrete

mathematical disturbance model for the general case:

x_S ((k + 1) T) = A__S x_S (k T) , x_S (0) = x_ S0

z_S (k T) = C__S x_(k T) , (1.54)

where xS denotes the state vector and zS denotes the

output vector of this formulation.

Figure 1.5 displays the structure of the extended plant

model including the disturbance model. With this the state

equations of the extended plant model may be formulated

as follows:

⎡
⎢
⎣

 x_((k + 1) T)
 x_S ((k + 1) T)

⎤
⎥
⎦
 =

⎡
⎢
⎣

 A__D

 0_
 E__D C__S

 A__S
⎤
⎥
⎦

⎡
⎢
⎣

 x_(k T)
 x_S (k T)

⎤
⎥
⎦

 +
⎡
⎢
⎣

 B__D

 0_
⎤
⎥
⎦
 u_(k T) , (1.55)

x_S0

disturbance
model

plant model

x_S ((k + 1) T) = A__S x_S(k T)

x_0

x ((k + 1) T) = A__Dx (k T) + B__D u (k T) + E__D zS (k T)

u (k T)
y_ (k T)

C__

C__S

Figure 1.5: Extended plant model

Laboratory Experiment Ball and Beam BB50 Controller Design in the State Space

Theoretical Background of the State Controller 1-9

y_ (k T) = [C__ 0_]
⎡
⎢
⎣

 x_(k T)
 x_S (k T)

⎤
⎥
⎦
 . (1.56)

Eq. 1.55 formulates the standard state space description

of the plant where only the control vector u_ and the initial

condition

x_0E =
⎡
⎢
⎣

x_0
x_S0

⎤
⎥
⎦

(1.57)

are acting as external signals. Therefore a controller as

well as an observer are designable according to the

methods described above. It is obvious from figure 1.5

that u_ cannot influence the disturbance model in any case.

With respect to this the controller is selected as follows:

u_ (k T) = − F__ x_ (k T) + u_ S . (1.58)

However the signal zS was assumed to be not measurable.

An observer for the extended plant model, called

disturbance observer, provides an estimation ẑ_S of the

disturbance vector. The disturbance observer is driven by

the estimation error e_. An approximated disturbance

compensation is realized using ẑ_S in the following relation

(Föllinger 1994):

u_S = − (B__ D
T B__D) −1 B__ D

T E__ D ẑ_ S . (1.59)

After describing the theoretical background of the

complete state control the following chapter will deal with

the realization of the state control for the BB50 laboratory

experiment.

1.6 References

/1/ : O. Föllinger :

Regelungstechnik, Hüthig - Verlag,

Heidelberg 1994

/2/ : P. M. Frank :

Regelungstechnik II, Vorlesungssript,

Uni-GH Duisburg FB 9, Duisburg 1994a

/3/ : P. M. Frank :

Regelungstechnik III, Vorlesungssript,

Uni-GH Duisburg FB 9, Duisburg 1994b

/4/ : R. Isermann :

Digitale Regelsysteme I, Springer - Verlag,

Berlin 1987

/5/ : A. J. Laub und J. N. Little :

Control System Toolbox for use with

Matlab, User’s Guide, The Math Works,

Inc., Sherborn 1986

Controller Design in the State Space Laboratory Experiment Ball and Beam BB50

1-10 Theoretical Background of the State Controller

2 Realization of the
State Controller

This chapter describes the realization of the state control

for the ball and beam system. This includes the denotation

of all the BB50 system variables. The pole placement for

the controller and the observer is carried out by means of

simulating the closed control loop containing the linear

and the non-linear plant model. In addition an algorithm

for the constant compensation of the sticking friction of

the BB50 driving mechanic is derived. Then a simple

filter method for the camera signal indicating the ball

position is described. At first the model parameters

introduced in the chapter "Modelling" are determined.

2.1 Model Parameters for the
Ball and Beam System

Some of the parameters were determined by calculating

the mean values of the results of extensive measurings

taken from the laboratory setup. The values are shown in

table 2.1.

Using the values from table 2.1 the still missing model

parameters are determined as follows:

Roll Radius of the Ball

The roll radius of the ball r results from the formulation:

r = √⎯⎯⎯⎯⎯⎯⎯⎯⎯ R2 − (D ⁄ 2)2 = 0,018 m . (2.1)

Moment of Inertia of the Ball

Using a steal ball the moment of inertia Ib is calculated by

(Frik 1994):

 Ib =
2
5

 m R2 = 4,32 10−5 kg m2 . (2.2)

Moment of Inertia of the Beam

The complete moment of inertia Iw of the beam is

combined by the moment of inertia of the rail Il and the

moment of inertia of the driving mechanic Im. For the rail

with its u-profile the moment of inertia of a long rod is

taken as a first approximation (Frik 1994):

Il =
1
3

 lw
2 M = 9,35 10−2 kg m2 . (2.3)

The moment Im denotes the resulting moment for the

beam and not the primary moment of inertia of the drive,

which is neglectable. On determination of Im it is to be

considered that the primary moment is transformed to the

beam with the squared transmission ratio μ. Im results

with μ = 50:

Im = μ2 0,177 10−4 kg m2 ≈ 0,5 Il . (2.4)

With this

Iw = Il + Im ≈ 1,5 Il . (2.5)

Now all the model parameters are known. They will be

taken to calculate the matrices of the state space

description according to the following section.

Description Denotation Value Unit

Ball radius (steal) R 0,02 m

Ball mass m 0,27 kg

Beam mass M 1,122 kg

Beam radius lw 050 m

Force-distance l 0,49 m

Rail distance D 0,017 m

Friction beam-drive b 1,0 Ns ⁄ m

Stiffness

driving-spring

K 0,001 N ⁄ m

Table 2.1 : Determined physical system values

Laboratory Experiment Ball and Beam BB50 Realization of the State Controller

Realization of the State Controller 2-1

2.2 Linear State Space Model

A suitable operating point x_0 , u0 is to be selected to

linearize the equations 1.37-1.40. The non-linear state

equations are linearized around

x_0 =

⎡

⎢

⎣

⎢
⎢

⎢
⎢

x10
0

0

0

⎤

⎥

⎦

⎥
⎥

⎥
⎥

 = 0_ (2.6)

with respect to a symmetric behaviour around the middle

of the beam. This selection is the only possible one to

obtain a beam symmetry for deviations of the ball position

in either positive or negative direction. With this the

driving force u0 is given in the operating point by:

u0 = 0 . (2.7)

According to the correlations described in the chapter

"Modelling" the result for the linearized system matrix

A__ is:

A__ =

⎡

⎢

⎣

⎢
⎢

⎢
⎢

 0

 −0,3421 1 ⁄ s2

 0

 18,898 1 ⁄ (ms2)

 1 ⁄ s

 0

 0

 0

 0

 6,592 m ⁄ s2

 0

 − 0,344 1 ⁄ s2

 0

 0,031 m ⁄ s

 1 ⁄ s

 −1,713 1 ⁄ s

⎤

⎥

⎦

⎥
⎥

⎥
⎥

 ,

(2.8)

and the result for the control vector b_ is:

b_ =

⎡

⎢

⎣

⎢
⎢

⎢
⎢

0

−0,0633 m ⁄ (s2 N)
0

3,4960 1 ⁄ (s2 N)

⎤

⎥

⎦

⎥
⎥

⎥
⎥

 (2.9)

Now the linear state space description of the ball and beam

system is known completely. Therefore the design of the

state controller is described in the following section.

2.3 Design of the State
Controller

We start with a short consideration of the open control

loop before the feedback coefficients of F__-matrix as well

as the prefilter V are designed.

2.3.1 Eigenvalues of the Ball and
Beam System

Figure 2.1 shows the eigenvalues λi , i = 1,..., 4 of the

plant in the z-plane calculated by means of Eq. 1.13. The

system is unstable because a pole is outside the unit circle.

The state feedback as shown in figure 2.2 stabilizes the

plant as will be described in the following.

2.3.2 Controller Design Using Pole
Placement

The aim of this section is to determine a control matrix

F__ = f_T, so that the closed control loop obtains a desired

dynamic behaviour. With respect to the dynamic it is to

be considered that the BB50 system provides a maximum

control force of umax = 6,45 N. Therefore the pole

placement has to follow this limitation, i.e. the selected

poles must not be located to far left of the jω-axis in the

j Im ⎧
⎨
⎩ z ⎫

⎬
⎭

Re ⎧
⎨
⎩ z ⎫

⎬
⎭

z - plane

 1

1

Figure 2.1 : Poles of the open loop system in the z-plane

Realization of the State Controller Laboratory Experiment Ball and Beam BB50

2-2 Realization of the State Controller

s-plane respectively corresponding locations in the

z-plane. Furthermore the linearization of the state space

description required a small angle of the beam α.

Performing the pole placement with respect to the

mentioned constraints leads to the following eigenvalue

configuration of the ball and beam system:

λR 1 = e−T 1 ⁄ s = 0,9512

λR 2 = e−T 5 1 ⁄ s = 0,7788

λR3 = e−T 15 1 ⁄ s = 0,4724

λR 4 = λR 3 . (2.10)

With these values the f_T-matrix results according to Eq.

1.24

f_ =

⎡

⎢

⎣

⎢
⎢
⎢
⎢

 27,170 N ⁄ m

 29,82 Ns2 ⁄ m
 58,78 N ⁄ rad

 6,39 Ns ⁄ rad

⎤

⎥

⎦

⎥
⎥
⎥
⎥

 . (2.11)

It is to be noticed that the calculations were carried out for

the z-plane using the program Matlab with control tool

box. The z-plane had to be used because the control of the

BB50 system with a PC realizes a sampled data control.

Furthermore considerable differences between the design

of the continuous or the discrete system may be obtained

depending on the filling of the matrices of the closed

control loop. The design used mainly the Matlab

commands c2d and place (detailed description see Laub,

Little 1986).

To determine the prefilter V it is not necessary for the ball

and beam system to use the complex matrix equation 1.31.

In this case the consideration of the steady state provides

an alternative solution:

Figure 2.2: State feedback in the BB50 system

 V

 f1

y_(k T)w(k T)
 Ball and Beam System

 f2

 f3

 f4

−

Laboratory Experiment Ball and Beam BB50 Realization of the State Controller

Realization of the State Controller 2-3

x2(∞) = x3(∞) = x4(∞) = 0 . (2.12)

With this it follows from figure 2.2:

u(∞) = V w(∞) − f1 x1(∞) . (2.13)

So the control force has to compensate the weight of the

ball acting on the arm of the beam. In this case the

following is valid:

u(∞) = −
m g x1(∞)

l
 . (2.14)

According to Eq. 1.19 with x3(∞) = 0 it follows in

addition:

y(∞) = x1(∞) . (2.15)

On the other hand the steady state requires y(∞) = w(∞)
yielding with Eq. 2.15:

x1(∞) = w(∞) . (2.16)

This correlation and the insertion of Eq. 2.14 in Eq. 2.13

results for the prefilter:

V = f_1 −
m g

l
 = 21,7607 N ⁄ m . (2.17)

Now the design of the state controller is complete so that

the realization of the state observer can follow as

described in the following section.

2.4 Design of Reduced Order
State Observer

For the BB50 laboratory setup the state variables

x2 and x4 cannot be measured. Therefore they have to be

reconstructed by an observer with reduced order. The

theoretical background have been described in chapter

1.3.2.

All the measured variables as well as the control force are

used to estimate the missing states as shown in figure 2.3.

So that the measured vector y_ as an input of the observer

contains the elements y_ = [x1 x3]T. With Eq. 1.45 the

state equation of the ball and beam system may be stated

as follows:

⎡

⎢

⎣

⎢
⎢
⎢
⎢
⎢
⎢

x1 ((k + 1) T)
x3 ((k + 1) T)

…
x̂2 ((k + 1) T)
x̂4 ((k + 1) T)

⎤

⎥

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 =

⎡

⎢

⎣

⎢
⎢

⎢
⎢

AD 11

AD 31

…
AD21

AD 41

AD 13

AD 33

…
AD 23

AD 43

 ⋅
 ⋅
 ⋅
 ⋅
 ⋅

AD 12

AD 32

…
AD 22

AD 42

AD 14

AD34

…
AD 24

AD 44

⎤

⎥

⎦

⎥
⎥

⎥
⎥

⎡

⎢

⎣

⎢
⎢
⎢
⎢
⎢
⎢

x1 (k T)
x3 (k T)

…
x̂2 (k T)
x̂4 (k T)

⎤

⎥

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 +

⎡

⎢

⎣

⎢
⎢

⎢
⎢

BD 1
BD 3
…

BD 2
BD 4

⎤

⎥

⎦

⎥
⎥

⎥
⎥

 u_(k T) . (2.18)

Where the symbols

 AD i j , BD i i, j = 1 , ..., 4

denote the elements of the discrete system matrix A__D .

The poles of the observer are selected as

zi = e− T 50 1 ⁄ s = 0,0821 , i = 1, 2 (2.19)

With this the corresponding observer matrices are given

as follows:

L__B = ⎡⎢
⎣
 18,3520
 0,3248

 0,1322
 17,4363

⎤
⎥
⎦

A__B = ⎡⎢
⎣
 0,0821

 0
 0
 0,0821

⎤
⎥
⎦

F__B =
⎡
⎢
⎣

 −16,8555
 0,2069

 0,0570

 −16,0149
⎤
⎥
⎦

Realization of the State Controller Laboratory Experiment Ball and Beam BB50

2-4 Realization of the State Controller

B__B = ⎡⎢
⎣
 −0,0018
 0,0934

⎤
⎥
⎦

C__B =

⎡

⎢

⎣

⎢

⎢

 0
 1
 0
 0

 0
 0
 0
 1

⎤

⎥

⎦

⎥

⎥

V__B =

⎡

⎢

⎣

⎢
⎢

⎢
⎢

 1

 l11

 0

 l21

 0

 l12

 1

 l22

⎤

⎥

⎦

⎥
⎥

⎥
⎥

 . (2.20)

It is to be noticed that the elements of the matrices above

include units. So their values are not comparable directly.

The following section will extend the given plant model

to consider the effects of friction on the BB50 driving

mechanic.

2.5 Design of a Disturbance
Observer

The sticking friction of the BB50 driving mechanic was

neglected on the mathematical modelling of the plant. To

establish a control for the real system the friction is

estimated by a disturbance controller as described in

chapter 1.5.

The sticking friction behaves like a piece-wise constant

disturbance signal US0 (see figure 2.4). However the

distinct times tν when US0 changes its amplitude by the

values hν are unknown. So the disturbance signal may be

interpreted as a solution of the homogenous differential

equation

x
.
S = 0. (2.21)

With this it follows for the matrices of the disturbance

model from Eq. 1.54:

A__ S = 0 C__ S = 1 . (2.22)

Figure 2.5 shows that US0 acts via the control vector

E__D = B__D on x_ ((k + 1) T). So the extended system may be

written in the form:

 x_((k + 1) T) = A__D x_(k T) + B__D u_(k T)

 y_(k T) = C__ x(k T)

u(k T)

 η__((k + 1) T) = A__B η(k T) + F__B y_(k T) + B__B u(k T)

 x_̂(k T) = η(k T) + L__B y_(k T)

x_0

w(k T)
 V

x1

η__0
 f_

−

x3 x̂4 x̂2

Figure 2.3: Controlled BB50 system with a reduced order observer

Laboratory Experiment Ball and Beam BB50 Realization of the State Controller

Realization of the State Controller 2-5

⎡
⎢
⎣

 x_ ((k + 1) T)

 x̂S ((k + 1) T)

⎤
⎥
⎦
 =

⎡
⎢
⎣

 AD

 0_T

 B__D

 0

⎤
⎥
⎦

⎡
⎢
⎣

 x_ (k T)

 x̂S (k T)

⎤
⎥
⎦

 +
⎡
⎢
⎣

 B__D

 0

⎤
⎥
⎦
 u_(k T). (2.23)

A reduced order observer is now designed for this system.

All the measured variables, all the state variables as well

as the control force uS are used to estimate the disturbance

signal x̂S = US0 as shown in figure 2.6. The known vector

y_ as an input of the disturbance observer contains the

elements y_ = [x1 x̂2 x3 x̂4]T. The pole of the

disturbance observer is selected as

z3 = e− T 50 1 ⁄ s = 0,0821

With this the corresponding disturbance observer

matrices are given as follows:

L__B S = [0 0 0 5,4809]

A__B S = [0,0821]

F__B S = [−4,9618 −0,1258 0,0764 −4,5791]

B__B S = [−0,9179]

V__B S =

⎡

⎢

⎣

⎢
⎢

⎢
⎢

1
0
0
0

lB S 1

0
1
0
0

lB S 2

0
0
1
0

lB S 3

0
0
0
1

lB S 4

⎤

⎥

⎦

⎥
⎥

⎥
⎥

C__B S = [1] .

As for the reduced order state observer the elements of the

matrices above include units. So again the elements are

not comparable directly.

A simple alternative is the constant disturbance

compensation. Here a constant force is added to the

V
us (kT)

h1 h3

h2

h4

t0 t1 t2 t3 t4

h0
US0

t

Figure 2.4: Characteristic behaviour of the disturbance signal

w (kT) y_(kT)u (kT)

US0fT

−

B__D

− +

I_
z

A__D

C__
x (kT)

Figure 2.5: Closed control loop with disturbance signal

Realization of the State Controller Laboratory Experiment Ball and Beam BB50

2-6 Realization of the State Controller

control signal if the variance for the ball position exceeds

the default threshold value (2 cm). The sign of this

constant disturbance compensation depends on the

variance, the value has to be determined experimentally.

2.6 Filtering the Camera Signal
for the Ball Position

On measuring the state variable x1 irregular errors occur

acting as considerable disturbances for the controller. To

weaken this disturbance effect at least for a certain class

of these errors a simple filter method will be used. The

following will describe the strategy.

Filter method

During one sampling period the variation of the position

Δx1 is determined and compared with the maximum

possible variation Δx1 max. It is assumed that no error

occurred when Δx1 ≤ Δx1 max. The current measurement

value of x1 is then used for the controller. However in the

case of Δx1 >~ DELTA x sub {1^max} the position value

of the previous sampling period is used for the controller.

The limit value Δx1 max is determined as follows:

Δx1 max = x2 max T = 1 m ⁄ s 0,05 s = 0,05 m . (2.26)

However this method includes the disadvantage in the

extreme case that the condition for an error is valid for all

the following sampling periods. Under these

circumstances the control may fail completely because

the controller will always use only the last valid position

value. To limit this failure to a short period the position

values of the last ten sampling periods are compared in

addition. When the comparison results in ten identical

position values the filtering is interrupted for one

sampling period. So the controller uses the current

measurement value for the position x1. This simple filter

method guarantees that a measurement error is limited to

Δx1 max. The effect of this filter method will be shown

during the control of the BB50 laboratory setup.

B__B S

 uS(k T)

F__B S

 y_(k T)

V__B S

I_
z

A__B S

C__B S

0__T , 1

+

US0

+

Figure 2.6: Observer for the disturbance US0

Laboratory Experiment Ball and Beam BB50 Realization of the State Controller

Realization of the State Controller 2-7

Realization of the State Controller Laboratory Experiment Ball and Beam BB50

2-8 Realization of the State Controller

Theoretical Background of the Fuzzy
Controller

Date: 08.11.1995

Laboratory Experiment Ball and Beam BB50 Theoretical Background of the Fuzzy Controller

Theoretical Background of the Fuzzy Controller

1 Backgrounds of the Fuzzy Controller 1-1

1.1 The Fuzzy Set . 1-1

1.2 The Linguistic Variable . 1-2

1.3 The Fuzzification . 1-3

1.4 The Rule and the Rule Base . 1-3

1.5 The Inference Operation . 1-4

1.5.1 The Aggregation . 1-4

1.5.2 The Implication . 1-4

1.5.3 The Conclusion . 1-4

1.5.4 The Inference . 1-5

1.6 The Defuzzification . 1-5

1.7 Remarks . 1-5

2 Realization of the Fuzzy Controller 2-1

Laboratory Experiment Ball and Beam BB50 Table of Contents

Theoretical Background of the Fuzzy Controller i

Table of Contents Laboratory Experiment Ball and Beam BB50

ii Theoretical Background of the Fuzzy Controller

1 Backgrounds of the
Fuzzy Controller

1.1 The Fuzzy Set

The role of the numbers for the arithmetic is played by the

fuzzy sets, also known as fuzzy aggregates, for the fuzzy

theory. They are the mathematical base objects for which

corresponding operators are defined.

To control a process, the required data are provided by a

measuring system. Those data include the unit of

measuring, the measured variable and possibly some

other values which are not of interest in this case. The unit

of measuring is the physical unit i.e. meter, whereas the

measured value is a non-dimensional measured result. To

order the inordinate group of all possible data they could

be mapped to the group of real numbers, using for

example the corresponding number of the measured

value. Those numbers are representable graphically by a

straight line of numbers.

Correspondingly a set of expressions can be mapped. A

special case is the set with the element true, which can be

mapped to the numbers 0 and 1. In addition both sets are

combinable in the case an expression true or false is

assigned to each measured value. This representation

corresponds to the well-known binary logic.

DefuzzyficationAggregationFuzzyfication Process

Measuring

Rule Bases

Fuzzy Controller

Implication

Inference
Conclusion

Knowledge Base

X

←

W

←

Y
meas

u

←

e

←

Aggregation

Data Base (Linguistic Variables)

←

X
Y

ue

Figure 1.1: Components of the fuzzy Controller

1[m]

10 x2

∅

Data Set X

Figure 1.2: Mapping of the data set X to the real
 numbers

10 µ

∅

Statement Set M

true

not true

Figure 1.3: Mapping of the statement set M to the
 real numbers

Laboratory Experiment Ball and Beam BB50 Backgrounds of the Fuzzy Controller

Theoretical Background of the Fuzzy Controller 1-1

Using this method a bar with the length less than 1 meter

is clearly representable by the set of x contained in the

data set X which results with the expression μ = 1. Those

are all values which apply to 0 ≤ x ≤ 1.

Such a set, described by binary expressions, is called a

distinct set.

The set of all bars, which are longer than 1 meter, can be

described using the complement of the above mentioned

set. This again is a distinct set.

Human meaning will consider the difference between

0.99 m and 1.01 m as being not significant so that the

statement the bar with a length of 0.99 m does not belong

to the set whereas the bar with 1.01 m belongs to it seems

to be unnatural. A more plausible description is reachable

by expanding the set of expressions. The representation

of long bars could then look like the following:

The difference between the figures 1.5 and 1.6 can be seen

from the transition region from μA (x) = 0 to μA (x) = 1.

While the membership changes step-wise in the figure

1.5, a sliding transition of the membership values takes

place in the figure 1.6. Doing this according to human

mind a more natural description of the term length is

possible. Such a set is called an indistinct set or a fuzzy

set.

In the most general case the set of expressions is

completely mappable to the interval of the real numbers.

This is representable by the so-called membership

function μA (x). It describes the degree of membership of

all elements a ∈ A ⊆ X.

With that it is possible to describe indistinct terms like

nearly true, fairly true, quite false, etc. mathematically.

So the fuzzy set is described by an ordered set of pairs of

the form:

A = {(x,μA (x)) | x « X }

Features of the Membership Functions:

• The membership function μ(x) describes an onto

mapping, that means for each picture point μ ∈ U

there exists at least one original picture point a∈
A. So only A →U describes a distinct mapping,

whereas the reverse mapping U →A is indistinct in

general.

• The range of values μ(x) is the set of the positive,

real numbers R +. Usually μ(x) is normalized to 1

when no other statements are made. So the fuzzy

logic is a generalization of the classical logic.

1.2 The Linguistic Variable

It was shown in the previous section that with human

mind fuzzy terms are describable mathematically. With

this one must not forget that those terms always apply to

the set A ⊆ X with the membership function μA (x).

Figure 1.4: Example for a distinct set

Figure 1.5: Example for the complement of the
 distinct set (see above)

1 2 x/[m]0

1

0

0.5

µ (x)
A

Figure 1.6: Example for a fuzzy set

Backgrounds of the Fuzzy Controller Laboratory Experiment Ball and Beam BB50

1-2 Theoretical Background of the Fuzzy Controller

Example:

Let us assume the length x ∈ X is given, so the term very

short (Set SK) is definable using the fuzzy set μSK(x).

Similar to this further terms like short, normal, long are

definable using further fuzzy sets, but all the fuzzy sets

have to belong to the same base set X. The fuzzy sets built

in such a manner are combined to the so-called linguistic

variable.

So a linguistic variable can be taken as a group of fuzzy

sets, which are defined with respect to the same base set

X and the same range of values i.e. μ(x) ∈ [0,1].

There are no limits for the overlapping regions so that an

arbitrary number of fuzzy sets may overlap.

The totality of all input and output linguistic variables is

called the data base which is used for control.

1.3 The Fuzzification

Since the fuzzy theory generally defines operators only

for fuzzy sets, a fuzzy set is to be assigned to each distinct

measured value (crisp value), i.e. the components of the

control error vector e→. This process is called fuzzification.

It can be seen easily that μ(x) of a crisp value is identical

to the normalized impulse function γo (x) as well as the

result is a square function rect(x) (see figure 1.8) in case

the value is full of tolerances.

Unfortunately the following operation is called with the

same name. This is the expression xi is lij contained in the

rules. In this case xi is the fuzzificated measured value,

i.e. x=1[m], and lij is the j-th fuzzy set of the i-th linguistic

variable, i.e. l0,0 = very short. The index i indicates that

the fuzzy sets, which are to be compared, belong to the

same base set and range of values. Since the connections

and units in physical systems clearly define, which

measured value is assigned to which linguistic variable

the index i is neglectable.

It is also to be regarded that the keyword is describes an

operator. It determines the maximum degree of

correspondence aij of the both fuzzy sets using an and

combination (minimum result) of both fuzzy sets

followed by the determination of the maximum

membership value. This is a number out of the range from

Zero to the maximum value of μ(x).

1.4 The Rule and the Rule Base

A rule also called fuzzy implication has the general form:

if Premise then Conclusion

An arbitrary number of expressions xi is lij is combined

by the operators and or or in the premise.

Example for a premise:

x is near and v is great

µ (x)

x/[m]

1

0

0

normal long very longshortvery short

1

Figure 1.7: Example for a linguistic variable

µ (x)

x

1

0

0

µ (x)

1

0

a i j

x i x i

AND

Crisp value Value with tolerance

a i j maximum degree
o f co r r e s p o n d an ce

x i

x

l i j l i j

l i j

M e a s
x

M e a s
x

Figure 1.8: Fuzzification

Laboratory Experiment Ball and Beam BB50 Backgrounds of the Fuzzy Controller

Theoretical Background of the Fuzzy Controller 1-3

The terms near, great are defined as fuzzy sets in the

linguistic variables position and speed. The fuzzy sets x,

v are the fuzzificated currently measured values.

The conclusion is an expression of the form xo is loj. In

this case loj is the j-th fuzzy set of the linguistic variable

describing the output value and changed by the

implication. The equal sign is here an assignment of the

fuzzy set loj to the output variable xo.

A rule base is a combination of an arbitrary number of

rules.

The rule base describes the experience and the knowledge

about the process and therefore must not be complete. For

instance it could be the case that due to the ignorance of

the developer not all physical actions are known. The lack

of dominant rules is the result of the incompleteness of

the rule base. This leads to a bad or useless control

behaviour. This is repairable by the addition of further

rules to the rule base.

The totality of all linguistic variables and rule bases,

which characterize the fuzzy controller is called

knowledge base.

1.5 The Inference Operation

1.5.1 The Aggregation

The aggregation (combination) of the degrees of

membership aij, determined by the fuzzification, of a rule

is performed by operators given in the premise.

Example of such a premise:

a1,2 and a2,1 or a1,1

The degrees of membership ai,j are numbers with

0 ≤ ai,j ≤ μmax.

Operators:

• or

aab or acd ⇔ MAX (aab, acd)

• and

aab and acd ⇔ MIN (aab, acd)

In general the order of the operators has to be regarded,

because not all operators are commutative or associative

at all. But the and and or operators meet this condition so

that the premise can be interpreted recursively. The result

of the a aggregation ag is again a number. It is a measure

of the fulfilment of the premise.

1.5.2 The Implication

The implication is used to infer the degree of fulfilment

a′gr at the output from the degree of fulfilment agr of the

premise.

if agr then a′gr ⇔ agr → a′gr ≤ μmax

Usually the identity agr ≡ a′gr is taken as a mapping

instruction.

1.5.3 The Conclusion

After the implication has determined the degree of

fulfilment a′gr of the output the conclusion determines the

resulting fuzzy set.

Example:

µ (x)

x

1

0

0

µ (x)

1

x
0

a
o j

a
o j

Minimum Determination Product determination

Figure 1.9: Min- and product method

Backgrounds of the Fuzzy Controller Laboratory Experiment Ball and Beam BB50

1-4 Theoretical Background of the Fuzzy Controller

xo is stark

Doing this the fuzzy set of the output linguistic variable

named in the rule is suitably combined with a′gr. Usual

combinations are the determination of the minimum or

the product.

1.5.4 The Inference

All rules of a rule base are interpreted in this way. The

degree of fulfilment a′gr is determined for each rule. The

rules have to be combined because each rule delivers a

resulting fuzzy set. This is performed by means of

combining all the resulting fuzzy sets which apply to one

and the same output linguistic variable.

In the special case that the conclusion is carried out using

the product or minimum method and that the combination

uses the maximum determination, the combination can be

carried out previously to the conclusion using the

following instruction:

aoj = MAX (agr
j
 1 ,..., agr

j
 n) 0 ≤ agr ≤ 1

The index j references to the fuzzy set of the output

linguistic variable. This is a significant simplification.

The fuzzy sets of the output linguistic variable converted

in such a way are combined to one result. The

combination is usually carried out by the maximum

operator. Doing this the inference leads to the resulting

fuzzy set, which describes the degrees of membership to

the resulting set of all output values.

1.6 The Defuzzification

To come from the resulting fuzzy set determined by the

inference to a crisp value, i.e. the control signal u a

so-called defuzzification has to be carried out. That means

a characteristic value of the resulting fuzzy set has to be

found. To do this several methods are available, which

can be distinguished with respect to the computing effort

and the general application field.

• Maximum Choice (MAX)

y= min {y | μ(y) = μmax}

• Mean Value of the Maximum (MOM, Mean of

Maximum)

y = ∑

i=1

l
wi

l
 ∩ μ(wi) = μmax

• Center of Area (COA, Center of Area)

This is the most general operation. Therefore this

method of defuzzification is implemented in our

controller. Here the abscissa co-ordinate of the

Center of area is determined. The special

advantage of this method is the result with

continuous values in contrast to the first mentioned

methods.

y =
∫ μ(y) y dy

∫ μ(y) dy

∪

y =
∑ (μ(y

i
 +

Δ y
2

) + μ(y
i
 −

Δ y
2

)) yi Δy

∑ (μ(y
i
 +

Δ y
2

) + μ(y
i
 −

Δ y
2

)) Δy

1.7 Remarks

The fuzzy controller belongs to the non-linear steady

controllers. So its input/output behaviour is definitely

µ (y)

y

1

0

0
MAX

MOA COA

Figure 1.10: Defuzzification

Laboratory Experiment Ball and Beam BB50 Backgrounds of the Fuzzy Controller

Theoretical Background of the Fuzzy Controller 1-5

given by its control characteristic area. Unfortunately

there is no general method available to find suitable fuzzy

sets and rules for a given problem.

The fuzzy sets of the linguistic variables can be found with

respect to

• the characteristic values of the actuator and

measurement system,

• the knowledge of the control engineers,

• the observation of the process.

The rules can be found with respect to

• the experience of the operators,

• the knowledge of the control engineers,

• the observation of the process.

Figure 1.11: Example for a characteristic control area

Backgrounds of the Fuzzy Controller Laboratory Experiment Ball and Beam BB50

1-6 Theoretical Background of the Fuzzy Controller

Linguistic Variable: x0 Linguistic Variable: x1

PM0 PM1

Output Linguistic Variable: yout

PMo

NM0 NM1 NMo
µ

NMoPMo

x0v x1v

Rule 0: if x0 is PM0 and x1 is PM1 then yout is PMo end
Rule 1: if x0 is NM0 or x1 is NM1 then yout is NMo end

MAX
µµ

µ

µ

AN D

O R

µ µ

µ

y
outv

µ

ao0

ao1

a1,1

a0,1

a1,0

a0,0

PROD.

Input variables: x0, x1
Sets of Input variables: PM0, NM0, PM1, NM1
Values of input variables: x0v, x1v
Output variable: yout
Sets of Output variables: PMo
Value of output variable: youtv
µ is degree of fulfilment

Figure 1.12: Example for the execution of a fuzzy algorithm using the Max-Product-Method

Laboratory Experiment Ball and Beam BB50 Backgrounds of the Fuzzy Controller

Theoretical Background of the Fuzzy Controller 1-7

Backgrounds of the Fuzzy Controller Laboratory Experiment Ball and Beam BB50

1-8 Theoretical Background of the Fuzzy Controller

2 Realization of the
Fuzzy Controller

Different to the state control a cascade structure is used

for the fuzzy controller. Figure 2.1 displays this structure.

The signal names correspond to the names of the fuzzy

viariables.

A more simple definition of the fuzzy variables and rules

as well as a shorter execution time are the advantages of

the cascade structure. Each fuzzy block contains only two

inputs and one output. Therefore the number of its rules

is small. According to figure 2.1 the inner fuzzy controller

realizes the angle control of the beam. The setpoint for

this controller is provided by the outer position controller.

The difference of the beam angle setpoint and its

measured value as well as the beam angular velocity are

the required input signals of the angle controller. Its

output signal controls directly the force acting on the

beam. The difference of the position setpoint and its

measured value as well as the ball speed are the required

input signals of the ball position controller. The angle

setpoint of the beam is the output signal of this controller.

The fuzzy control described up to now contains no

elements to compensate the effects of the friction. Figure

2.2 displays an expanded structure of the fuzzy controller

containing additional disturbance compensation. The

disturbance signals are the beam friction and the ball

friction which are estimated by two additional fuzzy

blocks operating like fuzzy observers. To estimate the

beam friction the corresponding fuzzy observer requires

the current control signal for the force and the angular

velocity of the beam as input signals. The fuzzy observer

provides an offset value which is added to the control

signal to compensate the beam friction. The fuzzy

observer for the ball friction operates in a similar way.

+

-

-

-

-

power

position
controller

angle
controller

plant

setpoint

+ position

speed

angle

angularvelocity

Figure 2.1: Simplified structure of a Fuzzy controller for the model "Ball and Beam"

Laboratory Experiment Ball and Beam BB50 Realization of the Fuzzy Controller

Theoretical Background of the Fuzzy Controller 2-1

The input signals angle of the beam and speed of the ball

are used to determine an offset value. This offset value is

added to the angle setpoint of the beam.

Difference quotients are used to determine the missing

signals ball speed and angular velocity of the beam out of

the measured signals ball position and beam angle.

The fuzzy controllers as well as the fuzzy observers used

for this laboratory setup are realized by applying the

library FUZZY.LIB. It is a pure software realization of

the methods described above.

A single ASCII file for each controller or observer is used

to define the variables, their sets and the rules. The

detailed format of this file is described in the chapter

"Programming Instructions". Please regard the order of

the input variables in addition to the syntax rules

described in the mentioned chapter. This order is to be

obligatory for each file and must not be changed in any

case.

The ranges of the used variables are limited either by

hardware or by software. The following table contains the

variable names, their ranges and units.

plant

beam friction
observer

ball friction
observer

angle
controller

positions
controller

setpoint

+

+

+

+
+

+
+

+

--

position

speed

angleoffset

angle

angularvelocity

power

poweroffset

Figure 2.2: Structure of the fuzzy controller for model "Ball and Beam" with disturbance compensation

Realization of the Fuzzy Controller Laboratory Experiment Ball and Beam BB50

2-2 Theoretical Background of the Fuzzy Controller

Name: Unit Minimum Value Maximum Value
position m -0.7 0.7
speed m/s -0.5 0.5
angle rad -0.2 0.2
angleoffset rad -0.2 0.2
angular
velocity rad/s -0.6 0.6
power N -6.0 6.0
poweroffset N -6.0 6.0

The following four fuzzy description files realize in

example the fuzzy control of the system "Ball and Beam"

according to figure 2.2:

1. The inner angle control

(file name: "wcontrol.fuz"):

/* variable definitions */
var input angle
set negativ -0.2 1 0 0 endset
set zero -0.1 0 0 1 0.1 0 endset
set positiv 0 0 0.2 1 endset
endvar

var input angularvelocity
set negativ -0.6 1 -0.15 0 endset
set zero -0.3 0 0 1 0.3 0 endset
set positiv 0.15 0 0.6 1 endset
endvar

var output power
set bignegativ -5 0 -4.5 1 -4 0 endset
set negativ -3 0 -2.5 1 2 0 endset
set zero -0.1 0 0 1 0.1 0 endset
set positiv 2 0 2.5 1 3 0 endset
set bigpositiv 4 0 4.5 1 5 0 endset
endvar

/* rule definitions */
if angle is zero and angularvelocity is zero then
power is zero end
if angle is zero and angularvelocity is negativ then
power is positiv end
if angle is zero and angularvelocity is positiv then
power is negativ end
if angle is negativ and angularvelocity is zero then

power is bigpositiv end
if angle is negativ and angularvelocity is negativ then
power is bigpositiv end
if angle is negativ and angularvelocity is positiv then
power is positiv end
if angle is positiv and angularvelocity is zero then
power is bignegativ end
if angle is positiv and angularvelocity is negativ then
power is negativ end
if angle is positiv and angularvelocity is positiv then
power is bignegativ end

2. The position control (file name: "xcontrol.fuz"):

/* variable definitions */
var output angle
set bignegativ -0.2 0 -0.19 1 -0.18 0 endset
set negativ -0.1 0 -0.09 1 -0.08 0 endset
set zero -0.01 0 0 1 0.01 0 endset
set positiv 0.08 0 0.09 1 0.1 0 endset
set bigpositiv 0.18 0 0.19 1 0.2 0 endset
endvar

var input position
set negativ

-0.2 1 0 0 endset
set zero

-0.1 0 -0.03 0.5 0 1 0.03 0.5 0.1 0 endset
set positiv

0 0 0.2 1 endset
endvar

var input speed
set negativ

-0.3 1 0.0 0 endset
set zero

-0.2 0 -0.05 0.5 0 1 0.05 0.5 0.2 0 endset
set positiv

0.0 0 0.3 1 endset
endvar

/* rule definitions */
if position is zero and speed is zero then angle is
zero end
if position is zero and speed is negativ then angle is
positiv end

Laboratory Experiment Ball and Beam BB50 Realization of the Fuzzy Controller

Theoretical Background of the Fuzzy Controller 2-3

if position is zero and speed is positiv then angle is
negativ end
if position is negativ and speed is zero then angle is
positiv end
if position is negativ and speed is negativ then angle
is bigpositiv end
if position is negativ and speed is positiv then angle
is zero end
if position is positiv and speed is zero then angle is
negativ end
if position is positiv and speed is negativ then angle
is zero end
if position is positiv and speed is positiv then angle is
bignegativ end

3. The estimation of the beam friction

(file name: "werror.fuz"):

/* variable definitions */

var input angularvelocity
set zero -0.03 0 0 1 0.03 0 endset
set notzero -0.03 1 0 0 0.03 1 endset
endvar

var input power
set negativ -3 1 -1 0 endset
set zero -1 0 0 1 1 0 endset
set positiv 1 0 3 1 endset
endvar

var output poweroffset
set negativ -3 0 -2.5 1 -2 0 endset
set zero -0.1 0 0 1 0.1 0 endset
set positiv 2 0 2.5 1 3 0 endset
endvar

/* rule definitions */
if power is zero then poweroffset is zero end
if angularvelocity is notzero then poweroffset is zero
end
if power is negativ and angularvelocity is zero then
poweroffset is negativ end
if power is positiv and angularvelocity is zero then
poweroffset is positiv end

4. The estimation of the ball friction

(file name: "xerror.fuz")

/* variable definitions */
var input angle
set negativ -0.1 1 -0.02 0 endset
set zero -0.02 0 0 1 0.02 0 endset
set positiv 0.02 0 0.1 1 endset
endvar

var input speed
set zero -0.1 0 0 1 0.1 0 endset
set notzero -0.1 1 0 0 0.1 1 endset
endvar

var output angleoffset
set negativ -0.04 0 -0.03 1 -0.02 0 endset
set zero -0.01 0 0 1 0.01 0 endset
set positiv 0.02 0 0.03 1 0.04 0 endset
endvar

/* rule definitions */
if angle is zero then angleoffset is zero end
if speed is notzero then angleoffset is zero end
if angle is negativ and speed is zero then angleoffset
is negativ end
if angle is positiv and speed is zero then angleoffset
is positiv end

The described files are contained in the program disk and

will be loaded as standard files automatically after starting

the program.

A runtime test is executed automatically after loading a

fuzzy description file. This causes a short delay. In case

the medium execution time of the corresponding fuzzy

objects exceeds the sampling period of the digital

controller, the rule base may not be used to control the

system.

Realization of the Fuzzy Controller Laboratory Experiment Ball and Beam BB50

2-4 Theoretical Background of the Fuzzy Controller

Program Operation

(WINDOWS Version)

Printed: 2. November 1999

Laboratory Experiment Ball and Beam BB50 Program Operation

Program Operation

1 Program Operation 1-1

1.1 Program Start . 1-1

1.2 Sensor Calibration . 1-2

1.3 Main Window . 1-3

1.4 Menu File . 1-4

1.5 Menu IO-Interface . 1-5

1.6 Menu Edit . 1-6

1.7 Menu Run . 1-7

1.8 Menu View . 1-9

1.9 Menu Help . 1-11

1.10 Description of the File Formats . 1-12

1.10.1 The Format of the Fuzzy Description File (*.FUZ) 1-12

1.10.2 Format of the File ERROR.OUT . 1-14

1.10.3 Format of the Fuzzy Controller File for the Laboratory Experiment BB50 (*.FBW) 1-14

1.10.4 Format of the State Controller File for the Laboratory Experiment BB50 (*.STA) 1-14

1.10.5 The Format of the Documentation File *.PLD 1-15

1.10.6 Format of the Calibration Data File DEFAULT.CAL 1-15

1.11 The DEMO Version . 1-16

Laboratory Experiment Ball and Beam BB50 Table of Contents

Program Operation i

Table of Contents Laboratory Experiment Ball and Beam BB50

ii Program Operation

1 Program Operation

The software package provides two versions to control

the plant. The first version is a state controller as described

in chapter "Realization of the state controller". Controller

parameters are on-line adjustable. The second version to

control the BB50 is a fuzzy controller as described in

chapter "Realization of the Fuzzy Controller". Controller

adjustments are storable to a hard disc and may be read at

a later time. The setpoint for the ball position is adjustable

as a constant value or a time function. Measurements of

system variables are recordable with various trigger

conditions. Recorded data are representable in a graphic

on the screen.

1.1 Program Start

The correct execution of the program requires that besides

BB50W.EXE the following files are available in the

actual directory:

DEFAULT.CAL
BB50.HLP
BB50W16.INI
BWSERV16.DLL
TIMER16.DLL
PLOT16.DLL
BC450RTL.DLL
DAC98.DRV
DIC24.DRV
DEFAULT.FBW
XCONTRO.FUZ
WCONTROL.FUZ
XERROR.FUZ
WERROR.FUZ
DEFAULT.STA

The executable program requires at least all of the

mentioned dynamic link libraries (*.DLL) as well as the

IO-adapter card drivers (*.DRV), which may be

contained in another directory but with a public path (like

Windows/System).

Attention:

The files BWSERV16.DLL as well as TIMER16.DLL

must reside in the actual directory!

An additional driver DUMMY.DRV is required for the

DEMO version of the program.

The file DEFAULT.CAL is used to store the calibration

data of the system. A detailed description of this file is

given in chapter 1.10.6. The help file BB50.HLP allows

for operating the program without having this manual at

hand. The function key F1 or a specific ’Help’ button

presented in a dialog is to be used to activate the

corresponding help section. The initialization file

BB50W16.INI is completely controlled by the executable

program itself and should not be changed by the user. It

serves for handling the IO-adapter card driver.

DEFAULT.FBW contains the file names list of the four

fuzzy description files belonging to the fuzzy controller

of the system. These fuzzy description files are loaded

automatically during the program start. The file format is

described in 1.10.3.

DEFAULT.STA contains the parameters of the state

controller. This file is loaded automatically during

program start. The file format is described in 1.10.4.

After starting the program BB50W.EXE the standard

data files (see above) are loaded and checked, which can

take some seconds. Missing files will result in

corresponding error messages. The check procedure

includes trying to open the recently selected driver

(DAC98.DRV or DIC24.DRV) for the PC adapter card.

When this driver could not be opened the TIMER16.DLL

will present the error message ’StartTimer - InitDriver

failed’. After prompting this message, the main window

of the program will appear offering the menu item ’IO

Interface’ to select another driver or to change the address

of the adapter card.

Laboratory Experiment Ball and Beam BB50 Program Operation

Program Operation 1-1

1.2 Sensor Calibration

When the program started without any error the ’BB50

Calibration Dialog’ (see figure 1.2) will appear

automatically on the screen.

This dialog allows for calibrating the position sensor

(CCD camera) as well as the beam angle sensor

(incremental encoder). The complete procedure is

carried-out in three distinct steps as it is obvious from the

three static fields in the window. At the beginning each

of the static fields is emphasized with a blue (aqua)

coloured background and a ’Start’ button is enabled only

for the upmost field. The calibration steps are as follows:

The first calibration step maps the current incremental

encoder signal to a beam angle of zero and at the same

time the current camera signal is taken as a zero position

signal of the ball. That means that the user is responsible

at first to turn the beam to a horizontal position and then

place a ball in the middle of the beam before pressing the

’Start’ button. The background colour will then turn to

green until either valid measurements have been taken or

errors have been detected.

A successful result is indicated by a white background

colour, a check mark replacing the ’Start’ button and an

automatic jump to the next calibration step.

 A false result is instead recognizable by a red background

colour, a ’Retry’ button replacing the ’Start button and an

additional error message (See below for possible error

messages). The user is strictly recommended to ’repair’

the error before proceeding with the dialog.

The second calibration step, when activated, turns the

background colour of the second static field to green and

tries to position the ball at the left margin of the beam by

starting the servo amplifier (enable output stage release)

and then increasing the force (PI-controlled up to a limit

of 3 [N]) acting on the beam until either the ball reaches

the left margin (the current camera signal is taken as a

sensor value for this position) or the measuring time

exceeds a limit of 5 seconds.

The first case, a successful result, is indicated by a white

background colour, a check mark replacing the ’Start’

button and an automatic jump to the next calibration step.

The second case, a false result, is instead recognizable by

a red background colour, a ’Retry’ button replacing the

’Start button and an additional error message (See below

for possible error messages). To ’repair’ the error the user

has just to turn the horizontal beam manually until the ball

reaches its left margin before pressing the ’Retry’ button.

The third calibration step is similar to the second

calibration step but for a ball position at the right margin

of the beam.

Figure 1.2: The ’BB50 Calibration Dialog’

Program Operation Laboratory Experiment Ball and Beam BB50

1-2 Program Operation

The ’OK’ button of the dialog is enabled only when all of

the three calibration steps have been carried-out

successfully. The ’Cancel’ button may be used

alternatively to terminate the dialog. But in this case none

of the controllers can be started.

Possible error messages:

System not ready. Check Connections and Power.
Disengagement does not respond.
Camera signal out of range.
Unexpected limit switch.

Terminating the program itself will write the current

calibration data, which are either from the calibration

procedure or default data, to the file DEFAULT.CAL.

1.3 Main Window

Following a successful calibration the main window

appears on the screen as shown in figure 1.3. The first

screen row contains the main menu items. Its submenus

are described in the following sections. The window

BB50 Monitor is displayed in the middle of the screen.

It displays the system state (controller type) and input as

well as output signals of the controller.

Figure 1.3: The main BB50 window with monitor

Laboratory Experiment Ball and Beam BB50 Program Operation

Program Operation 1-3

1.4 Menu File

The pulldown menu File (see figure 1.2) provides

functions for loading or saving of different files, to print

plot windows as well as to terminate the program.

Load State Controller: Loads a parameter file (default

extension *.STA) for the state controller. The file name

is selected by the user from a file dialog window.

Save State Controller: Saves the adjusted parameters of

the state controller in a disc file. Destination file is the

parameter file of the state controller, which was recently

opened. Please notice that the file "DEFAULT.STA" was

opened and loaded automatically during the program start

and may be overwritten by this command.

Save State Controller as ...: Operates similar to the item

"Save State Controller", the name of the destination file

is however selected by the user by means of a file dialog

window.

Load Fuzzy Controller: Loads a parameter file

(extension *.FBW) for the fuzzy controller. The file is

selected by the user by means of a file dialog window. The

parameter file contains the file names of four fuzzy

description files. These fuzzy description files are loaded

automatically and checked. A fuzzy rule base is generated

if no errors were detected. Further information about the

fuzzy description file can be found in the chapter 1.9.1

"Format of the Fuzzy Description File (*.FUZ)".

Save Fuzzy Controller as ...: Saves the names of the

fuzzy description files of the fuzzy controller. The name

of the destination file is selected by the user by means of

a file dialog window.

Load Recorded Data: Opens a file dialog window for

user selection of a data file containing recorded

measurements (documentation file with extension

*.PLD).

Save Recorded Data as ...: Saves the measurements

previously recorded and the current system adjustments

in a data file. The file name is selected by the user by

means of a file dialog window (extension *.PLD).

Print: Opens the Print Window Dialog to select one or

several plot windows for print output. This dialog

presents a listbox containing the titles of all open plot

windows. One or several windows may be selected for

print output on the currently selected printer device (see

Print Setup ...). A single window is printed on the upper

half of a DIN A4 paper. The second window would be

printed on the lower half of this paper. The following

windows are printed on the next pages accordingly.

Print Setup ... Opens the Windows dialog to select a

printer and to adjust its options.

Selecting the menu item Exit will terminate the program

(equivalent to pressing Ctrl+F4).

Figure 1.4: The sub menu ’File’

Program Operation Laboratory Experiment Ball and Beam BB50

1-4 Program Operation

1.5 Menu IO-Interface

The pulldown menu IO-Interface provides functions to

manipulate the driver for the PC plug-in card (see figure

1.5a).

The first two items

DAC98

DIC24

represent the selectable drivers (DAC98.DRV,

DIC24.DRV) for the IO-adapter cards which may be

installed in the PC. Each driver is selectable only when it

is contained in the same directory as the program

BB50W.EXE (or in a directory with a public path like

Windows/System). The recently selected driver is

emphasized with a check mark. On program start the

selected driver is read from the file BB50W16.INI which

is controlled by the program automatically. When this file

is missing the default driver is always the DAC98.DRV.

The function Setup opens a dialog (see figure 1.5b) to

adjust the drivers hardware address of the installed

IO-adapter card. This address has to match the hardware

settings !

This menu item is selectable only when no controller is

active.

Figure 1.5a: The sub menu ’IO-Interface’

Figure 1.5b: The card address setup dialog

Laboratory Experiment Ball and Beam BB50 Program Operation

Program Operation 1-5

1.6 Menu Edit

The pulldown menu Edit (see figure 1.6a) contains items

to edit parameters of the state controller as well as files

for the fuzzy controller.

The menu item State Controller Parameter displays a

notebook with four pages to edit all parameters of the state

controller.

Selecting the first tab of this notebook allows for adjusting

the elements of the State Feedback-vector (see figure

1.6b).

The second tab provides the adjustment of the Prefilter
constant to obtain a steady state error of zero (see figure

1.6c).

Selecting the third tab labelled State Observer allows

for manipulating the L, A and F matrix or the B vector

of the observer (see figure 1.6d).

The fourth tab provides the adjustment of the parameters

used by the Friction Compensation (see figure 1.6e).

The notebook dialog is terminated either by pressing the

’OK’ button or the ’Cancel’ button which are contained

in each page. Any parameter changes become valid only

if the ’OK’ button was used to terminate the dialog.

The menu item Fuzzy Controller Parameter displays a

dialog containing buttons labelled ’Select’ and ’Edit’ for

each controller/observer providing methods either to

select a new fuzzy description file or to edit the currently

selected file which opens a new edit field below the dialog

displaying the content of the fuzzy description file.

The following figure 1.6f displays this dialog with an

opened edit field for the fuzzy description file named

XCONTROL.FUZ of the fuzzy position controller.

The edit field itself is closed either by the button ’Save’

which stores the content of the edit field to the file or by

Figure 1.6b: The ’State Feedback’ dialog

Figure 1.6a: The sub menu ’Edit’

Figure 1.6d: The ’State Observer’ dialog

Figure 1.6c: The ’Prefilter’ dialog

Figure 1.6e: The ’Friction Compensation’ dialog

Program Operation Laboratory Experiment Ball and Beam BB50

1-6 Program Operation

the button ’Abort’ which leaves the file unchanged.

Any changes of the fuzzy description files will become

active only by pressing the button ’Reload’ of the dialog.

That means that even the fuzzy controller file (*.FBW) is

updated when a new fuzzy description file was selected.

The dialog is terminated by means of the ’Cancel’ button.

1.7 Menu Run

The pulldown menu Run in figure 1.7a contains items to

start and stop a controller, to calibrate sensors, to record

measurements and to adjust the setpoint. The items to

start any controller are enabled only when the sensors

have been calibrated successfully which is indicated by a

check mark.

State Controller: Starts the state controller. A dialog

window is opened automatically to configure observers

and the disturbance compensation before the controller is

active (see figure 1.7b). These settings may be changed

even for an active controller.

Fuzzy Controller: Starts the fuzzy controller defined by

its fuzzy description files (*.FBW). A dialog window is

opened automatically to configure observers for the

Figure 1.6f: The ’Fuzzy Controller Parameter’ dialog

Figure 1.7a: The sub menu ’Run’ Figure 1.7b: The ’Start State Controller’ dialog

Laboratory Experiment Ball and Beam BB50 Program Operation

Program Operation 1-7

disturbance compensation before the controller is active

(see figure 1.7c).

The menu item Calibrate Sensors carries out a menu

driven calibration of the sensors as it was described with

section 1.2. Any active controller will be stopped

automatically.

Stop Controller: Stops any of the selected controllers and

disables the menu item ’Setpoint Generator’.

The function Start Measuring is always enabled. It opens

a dialog (see figure 1.7d) to adjust the measuring time and

to assign trigger conditions to start recording the

measurements. The measuring time in seconds is entered

to the right to the title ’Total Time [s]:’. When ’Slope’ is

set to ’no trigger’ measurement recording is started

directly after closing the window using the ’Ok’ button.

The trigger signal for conditional measuring (’Slope:’ is

set ’positive’ or ’negative’) is selected below the title

’Trigger Channel:’. The measurement recording starts

after this signal raises above or falls below, depending on

the settings of ’Slope’, the limit value ’Trigger Value:’.

In addition ’Prestore:’ allows for adjustment of a time

range for recording measurements before the trigger

condition is valid. This time has always to be shorter than

the adjusted measuring time.

The Setpoint Generator dialog (see figure 1.7e) is

available only when one of the controllers is active. This

dialog provides the adjustment of the setpoint of the ball

position.

As can be seen from the figure, the setpoint is provided

by a signal generator. The adjustable parameters are

amplitude, offset, period and signal shape. In case the item

’Constant’ is selected for the signal shape the

corresponding setpoint value is offset + amplitude. The

last is true also for periodic signals (rectangle, triangular,

ramp, sine) with adjustable amplitude.

Figure 1.7e: ’Ball Position Setpoint Generator’ dialog

Figure 1.7d: The ’Setup Measuring Function’ dialogFigure 1.7c: The ’Start Fuzzy Controller’ dialog

Program Operation Laboratory Experiment Ball and Beam BB50

1-8 Program Operation

1.8 Menu View

The pulldown menu View (see figure 1.8a) provides

functions for graphic representations of recorded

measurements, of data from a documentation file (*.PLD)

as well as 3D-characteristics of a selectable fuzzy

controller. Timing data may be displayed in addition.

The menu item Plot Measured Data is enabled only after

the first measurement acquisition is started. It opens a

dialog window (see figure 1.8b) to select the data which

are to be displayed in a graphic representation.

Terminating this dialog with ’Ok’ will display the graphic

window automatically on the screen. An example is

shown in figure 1.8c.

The menu item Plot File Data is enabled only when a

documentation file (*.PLD) was recently loaded by

means of the menu item ’Load Recorded Data’. The data

of the documentation file are selected and displayed in a

graphic representation as with the menu item ’Plot

Measured Data’.

The menu item Parameter From *.PLD File generates

an information box displaying the controller type and

parameters read from the currently selected

documentation file (*.PLD). This menu item is enabled

only when such a file was loaded successfully.

Figure 1.8a: The sub menu ’View’

Figure 1.8c: Example of a ’Plot Window’

Figure 1.8b: The ’Select Plot Data’ dialog

Laboratory Experiment Ball and Beam BB50 Program Operation

Program Operation 1-9

The menu item Fuzzy 3D opens a dialog (see figure 1.8d)

displaying the controller characteristic of a selectable

fuzzy controller in a three-dimensional graphic.

The fuzzy controller is referenced by its fuzzy description

file. The X-axis and the Y-axis of the graphic represent

the two inputs of a fuzzy controller while the Z-axis

represent its output. The dimensions, that means the

ranges of the input and output signals, of the resulting

cube are displayed in a static field below the selector box

for the fuzzy description file. The middle of the cube is

indicated by a blue point while the minimum value for all

axes is indicated by a red point.

The group of check boxes allows for manipulating the

layout of the graphic:

With ’Grid’ marked a grid with either a higher or lower

resolution depending on the setting of ’Low resolution’ is

displayed along the surface of the characteristic.

The surface itself is displayed in a grey scale (darker areas

indicate higher values along the Z-axis) when ’Surface’

is marked. The surface will be coloured if ’Colour’ is

marked in addition (increasing values along the Z-axis are

indicated by colour changes from red to blue).

The margins of the cube are displayed only when

’Co-ordinate box’ is marked. The same is valid for the

three axes depending on the setting of ’Co-ordinate

system’.

The check box ’Mark’ is selectable only when a fuzzy

controller is active. If ’Mark’ is set the current operating

point of the active fuzzy controller is indicated by a small

green area. Its dimension corresponds to the currently

selected grid width.

The scroll bars labelled ’Rotate a:’ and ’Rotate b:’ allow

for rotating the graphic with respect to the X-axis and the

Y-axis respectively. The crossing point of these axes is

the middle of the cube. Alternatively the rotation is

achieved by moving the mouse in the cube area

accordingly.

The button ’Print’ starts a hardcopy output to the currently

selected printer device.

The dialog is terminated by pressing the button ’Close’.

Activating the menu item Timing will present a window

(see figure 1.8e) displaying the minimum and maximum

values of the sampling period or the calculation time in

milli seconds measured (with a resolution of 1ms) since

the last start of a controller. The standard value is the

Figure 1.8d: The ’Show Fuzzy 3D’ dialog

Program Operation Laboratory Experiment Ball and Beam BB50

1-10 Program Operation

sampling period. While its minimum value is normally

close to the nominal value of 50 ms, the maximum value

may differ significantly from the nominal value especially

in the case another Windows task with time consuming

file accesses was started in the meantime.

Warning:

Starting another Windows task with too much file

accesses while the controller program is running may

cause a reset of the output stage release for the servo

amplifier !!!

The calculation of the minimum and maximum values of

the sampling period may be restarted by resetting the

values by means of the button ’Reset’

The button labelled ’Sample time’ resp. ’Calc time’

switches between the two corresponding values.

The dialog will be terminated by pressing the button

’Hide’.

1.9 Menu Help

The pulldown menu Help as shown in figure 1.9a

provides functions to control the Windows help function

and to obtain general information about the program.

The menu item Contents displays the contents of the help

file DTS200.HLP, while Search for Help On ... searches

for keywords contained in this help file. The item How to
Use Help opens the Use Help Dialog of Windows.

Activating the menu item About opens an information

box displaying the program version, the copyright and the

IO-adapter card requirements (see figure 1.9b).

Figure 1.9b: The ’About’ dialog

Figure 1.9a: The sub menu ’Help’

Figure 1.8e: The ’BB50 Timing’ dialog

Laboratory Experiment Ball and Beam BB50 Program Operation

Program Operation 1-11

1.10 Description of the File
Formats

1.10.1 The Format of the Fuzzy
Description File (*.FUZ)

The fuzzy description file with the extension FUZ is a file

to configure a fuzzy controller.

The fuzzy description file is used to configure a fuzzy

object, which i.e. may operate as a fuzzy controller.

The fuzzy description file is a simple ASCII file, which

can be edited by a text editor. The length of a line is limited

to 255 characters. Single assignments are separated by

spaces or tabulators.

It contains four types of elements, which are described in

the following sections:

Comments [optional]

The file can include a comment in classical C-style (’/*’

at the beginning and ’*/’ at the end) at every position

except for the definition part of label. At least one space

has to separate the comment string from the ’keywords’

’/*’ and ’*/’.

The Definition of a Label [optional]

The definition of a label is limited to one line. It starts with

the statement ’#define’. The next statement contains the

label name and the last statement contains the label

definition. Thus a label can be defined as follows:

#define name

 This_is_the_definition_of_the_label_name

The Definition of Fuzzy Sets and Variables

The definition of fuzzy sets is only allowed within the

definition of variables. It is ignored in the other case. The

definition of a variable starts with the statement ’var’. The

next statement can hold two different names, either

’input’ in case an input variable is to be defined or ’output’

in case an output variable is to be defined. The third

statement of a variable definition is its name. Now the

definition of the fuzzy set follows. It begins with the

statement ’set’ followed by the name of the fuzzy set. The

name is followed by the x/y values as base points for a

polygonal line. Similar to the statements the numbers are

separated by spaces or tabulators. The definition of the

fuzzy set ends with the statement ’endset’. The definition

of a variable ends with the statement ’endvar’ after all the

fuzzy sets of the fuzzy variable are defined. Such a

definition may look like the following:

var input temperature

set cold 10 1 20 0 endset

set medium 10 0 20 1 30 0 endset

set warm 20 0 30 1 endset

endvar

The Definition of Fuzzy Rules

The definition of a fuzzy rule is recognized from its first

statement ’if’. The last statement of a fuzzy rule is named

’end’. The definition of a fuzzy rule contains two parts,

the premise and the conclusion. Both parts are separated

by the statement ’then’. The premise and the conclusion

are built by a series of expressions which are combined

by operators (further details are shown in the chapter of

the theoretical backgrounds of a fuzzy controller).

1

0
10 20 30

Fuzzy-Var: "temper ature"

in degree Celsius

cold

medium

warm

M
e

m
b

e
rs

h
ip

Figure 1.10: The Fuzzy variable ’temperatur’

Program Operation Laboratory Experiment Ball and Beam BB50

1-12 Program Operation

Permitted operators of the premise are ’and’

(Min-Operator) and ’or’ (Max-Operator) whereas the

conclusion requires no operator to separate the

expressions. An expression is the linkage of a fuzzy

variable with one of its sets using the statement ’is’.

The formulation of a fuzzy rule requires that all the

variables in use are defined previously since the fuzzy

description file is interpreted only once from top to

bottom. The syntax check of a fuzzy object tests whether

the variables are defined, whether the used sets really

belong to the variable and if the expressions are used

correctly (input variables with the premise and output

variables with the conclusion). A simple definition of a

fuzzy rule may look like the following:

if temperature is cold then heating is high end

Table of the valid commands (keywords) and their

explanation:

Command Explanation

#define NAME TEXT Defines a NAME, which is usable in the
following statements and will be
replaced by the definition TEXT
automatically by the pre-processor.

/* Begin of comment, ignored by the fuzzy
controller kernel.

*/ End of comment.
var Begin of linguistic variable definition.

The statements "input" or "output" and
the name of the variable must follow this
keyword. Fuzzy sets are definable only
in the following. The definition of the
variable is terminated with the statement
"endvar".

input Defines the direction input for a variable.
output Defines the direction output for a

variable.
endvar End of definition of a variable.
set Begin of fuzzy set definition. A set

name and a series of pairs of values must
follow this keyword. The pairs of values
are the base points of the set.

endset End of set definition.

Command Explanation

if Begin of fuzzy rule definition. One or
multiple premises separated by
operators, the statement "then" and one
or multiple conclusions must follow this
keyword. The rule definition is
terminated by the statement "end". A
premise consists of a name of an input
variable, the statement "is" and the name
of the set belonging to this input
variable. The conclusion is built in a
similar way but the input variable is
replaced by the output variable.

is Separates variable and set in a premise
or conclusion.

then Separates the condition and the
assignment part of a fuzzy rule.

and Is the Minimum-Operator.
or Is the Maximum-Operator.
end End of rule definition.

Remark

The status and error messages which occur during the

interpretation of the fuzzy description file are written to

the file ERROR.OUT or appear on the screen.

Laboratory Experiment Ball and Beam BB50 Program Operation

Program Operation 1-13

1.10.2 Format of the File ERROR.OUT

The file ERROR.OUT may contain error messages as

well as status messages. It may look like:

Fuzzy Parser Version 1.04 (07-DEC-94)

Fuzzy-Set <set_name> is already defined.
Fuzzy-Set <set_name> expects numerical value.
Unknown variable specification <string>.
Variable <var_name> is already defined.
Rule error, fuzzy variable <var_name> not found.
Rule error, fuzzy variable <var_name> is an
output variable.
Rule error, fuzzy variable <var_name> is an input
variable.
Rule syntax error, missing is.
Rule error, fuzzy set <set_name> is not member
of <var_name>.
Rule syntax error, unknown Operator <string>.
<label_name> is already defined.

<n> Errors detected.

1.10.3 Format of the Fuzzy Controller
File for the Laboratory
Experiment BB50 (*.FBW)

The fuzzy controller file for the BB50 contains four file

names of fuzzy description files required for the fuzzy

controller. Every file name begins in a new line,

comments or empty lines are not allowed. Please change

this file only using corresponding functions of the BB50

controller software.

The fuzzy controller file DEFAULT.FBW looks like the

following:

xcontrol.fuz

wcontrol.fuz

xerror.fuz

werror.fuz

1.10.4 Format of the State Controller
File for the Laboratory
Experiment BB50 (*.STA)

This file contains all parameters of the state controller as

well as the corresponding observers for the laboratory

experiment BB50. Each entry consists of two lines, an

information block in square brackets in the first line and

a data block in the second line. Further comments or

empty lines are not allowed. The information block

describes sufficiently the function and number of data

inside the data block. Please change this file only using

corresponding functions of the BB50 controller software.

The state controller DEFAULT.STA file looks like the

following:

[Sampling Period]

0.05

[Feedback Vector]

-20 -40 -60 -2.3

[Observer Transformation Vector (l)]

29.8 0.084 -3467.8 28.574

[Observer System Matrix (a)]

4.54e-05 0 0 4.54e-05

[Observer Feedback Matrix (f)]

-29.83 -0.49 3467.6 173.4

[Observer Control Vector (b)]

-0.006 -0.256

[Disturbance Observer Transformation Vector (l)]

 0 0 0 -4.04

[Disturbance Observer System Matrix (a)]

 0.00674

[Disturbance Observer Feedback Matrix (f)]

0 0 -0.0005 3.525

[Disturbance Observer Control Vector (b)]

-0.99

[Constant Disturbance Compensation]

2.1

[Settings]

1 0

Program Operation Laboratory Experiment Ball and Beam BB50

1-14 Program Operation

1.10.5 The Format of the
Documentation File *.PLD

Measured data stored in a data file are reloadable and may

be output in a graphic representation. In addition the

system settings (CTRLSTATUS) which were active

during the start of the data acquisition are stored in this

file. They are displayable in a separate window.

The data file contains data in binary format stored in the

following order:

The structure PROJEKT PRJ.

The structure CTRLSTATUS.

The structure DATASTRUCT.

The data array with float values (4 bytes per value)

The size of the data array is defined in the structure

DATASTRUCT. With the BB50 the number of the stored

channels is always 8 (the length of the measurement

vector is 8, i.e. equal to 32 bytes). The vector contains the

following signals:

the position setpoint of the ball [m],

the measured position of the ball [m],

the angle of the beam [rad],

the control force [N],

the velocity of the ball [m/s],

the angle velocity of the beam [rad/s],

the friction compensation of the beam [N],

the friction compensation of the ball [N].

The number of the stored measurement acquisitions

(vectors) depends on the adjusted values for the sampling

period and the measuring time. The maximum number of

measurings is 1024. The time distance between two

successive acquisitions is an integral multiple of the

sampling period used by the controller.

1.10.6 Format of the Calibration Data
File DEFAULT.CAL

The standard calibration data file DEFAULT.CAL is read

automatically during the startup of the program

BB50W.EXE. If it does not exist default values will be

taken for the calibration data. Terminating the program

will possibly create this file and write automatically the

calibration data to it.

The file contains three parameters in ASCII format:

The first parameter represents the number of increments

read for the zero angle of the beam.

The second parameter represents the decimal number

corresponding to the camera signal read for the zero

position of the ball.

The third parameter represents the decimal number

corresponding to the camera signal range which maps the

ball position range between the left margin and the right

margin of the beam.

The file DEFAULT.CAL may have the following

content:

-3 741 560

Laboratory Experiment Ball and Beam BB50 Program Operation

Program Operation 1-15

1.11 The DEMO Version

The demo version of the program BB50W.EXE is

indicated by the title "BB50 - Monitor (Demo-Version)"

in the monitor window. It operates with a non-linear

mathematical model of the plant instead of reading sensor

signals from the IO-adapter card or writing control signals

to this card. Besides the functions to control the

calibration and to select the IO-interface all of the menu

items are available.

Remark:

Because the program names of the demo version and the

standard version are the same the programs must reside

in different subdirectories including the accompanying

drivers and dynamic link libraries. Furthermore the

dummy driver DUMMY.DRV must reside in the same

directory as the demo version of the program.

Program Operation Laboratory Experiment Ball and Beam BB50

1-16 Program Operation

BB50 Windows Software V1.0

Printed: 23. November 1999

Laboratory Experiment Ball and Beam BB50 BB50 Windows Software V1.0

BB50 Windows Software V1.0

1 Source Files of the BB50W Controller Program 1-1

1.1 General . 1-1

1.2 Global Data and Functions . 1-2

1.3 Dialogs and Windows of the Desktop . 1-4

TMainForm.ShowHint . 1-10

TMainForm.FormCreate . 1-10

TMainForm.FormShow . 1-10

TMainForm.FormClose . 1-11

TMainForm.FormDestroy . 1-11

TMainForm.FileMenuClick . 1-11

TMainForm.OpenStateClick . 1-11

TMainForm.SaveStateClick . 1-12

TMainForm.SaveStateasClick . 1-12

TMainForm.OpenFuzzyClick . 1-12

TMainForm.SaveFuzzyasClick . 1-13

TMainForm.LoadPlotData1Click . 1-13

TMainForm.SavePlot1Click . 1-13

TMainForm.Print1Click . 1-14

TMainForm.PrintSetup1Click . 1-14

TMainForm.ExitItemClick . 1-14

TMainForm.IOInterface1Click . 1-14

TMainForm.DAC98Click . 1-15

TMainForm.DIC24Click . 1-15

TMainForm.DACSetupClick . 1-15

TMainForm.Edit1Click . 1-16

TMainForm.StateControllerSetupClick . 1-16

TMainForm.FuzzyControllerSetupClick . 1-16

TMainForm.Run1Click . 1-17

Laboratory Experiment Ball and Beam BB50 Table of Contents

BB50 Windows Software V1.0 i

TMainForm.StateController1Click . 1-17

TMainForm.FuzzyController2Click . 1-17

TMainForm.StopController1Click . 1-18

TMainForm.CalibrateSensors1Click . 1-18

TMainForm.StartMeasuring1Click . 1-18

TMainForm.SetpointGenerator1Click . 1-19

TMainForm.View1Click . 1-19

TMainForm.PlotMeasuredData1Click . 1-19

TMainForm.PlotFileData1Click . 1-19

TMainForm.ParametersfromPLDFile1Click . 1-20

TMainForm.Fuzzy3D1Click . 1-20

TMainForm.Timing1Click . 1-20

TMainForm.Contents1Click . 1-20

TMainForm.SearchforHelpon1Click . 1-21

TMainForm.HowtoUseHelp1Click . 1-21

TMainForm.About1Click . 1-21

TMainForm.Timer1Timer . 1-21

TMainForm.PaintBox1Click . 1-22

TMainForm.MeasLabelClick . 1-22

TSingleInstance.WndProc . 1-22

TAboutBox.FormShow . 1-22

TCallibrateDlg.CenterBBtnClick . 1-23

TCallibrateDlg.LeftBBtnClick . 1-23

TCallibrateDlg.RightBBtnClick . 1-24

TCallibrateDlg.FormShow . 1-24

TCallibrateDlg.HelpBtnClick . 1-24

TShow3DFuzDlg.rescale . 1-25

TShow3DFuzDlg.recalc . 1-25

TShow3DFuzDlg.calcrot . 1-25

Table of Contents Laboratory Experiment Ball and Beam BB50

ii BB50 Windows Software V1.0

TShow3DFuzDlg.calctrans . 1-25

TShow3DFuzDlg.FormShow . 1-26

TShow3DFuzDlg.FormHide . 1-26

TShow3DFuzDlg.FuzzyCBoxChange . 1-27

TShow3DFuzDlg.DrawSquare . 1-27

TShow3DFuzDlg.DrawCoors . 1-27

TShow3DFuzDlg.DrawCoors2 . 1-28

TShow3DFuzDlg.DrawMark . 1-28

TShow3DFuzDlg.PaintBoxPaint . 1-28

TShow3DFuzDlg.ScrollBar1Change . 1-29

TShow3DFuzDlg.ScrollBar2Change . 1-29

TShow3DFuzDlg.PaintBoxMouseDown . 1-29

TShow3DFuzDlg.PaintBoxMouseMove . 1-29

TShow3DFuzDlg.PaintBoxMouseUp . 1-30

TShow3DFuzDlg.KoorsCBoxClick . 1-30

TShow3DFuzDlg.Koors2CBoxClick . 1-30

TShow3DFuzDlg.ColorCBoxClick . 1-30

TShow3DFuzDlg.LowResCBoxClick . 1-31

TShow3DFuzDlg.PrintBBtnClick . 1-31

TShow3DFuzDlg.MarkCBoxClick . 1-31

TShow3DFuzDlg.Timer1Timer . 1-31

TShow3DFuzDlg.HelpBtnClick . 1-32

TFuzzyParametersDlg.Big . 1-32

TFuzzyParametersDlg.Small . 1-32

TFuzzyParametersDlg.FormCreate . 1-32

TFuzzyParametersDlg.FormDestroy . 1-33

TFuzzyParametersDlg.FormShow . 1-33

TFuzzyParametersDlg.Sel1BBtnClick . 1-33

TFuzzyParametersDlg.Ed1BBtnClick . 1-34

Laboratory Experiment Ball and Beam BB50 Table of Contents

BB50 Windows Software V1.0 iii

TFuzzyParametersDlg.CancelEdBBtnClick . 1-34

TFuzzyParametersDlg.SaveEdBBtnClick . 1-34

TFuzzyParametersDlg.OKBtnClick . 1-35

TFuzzyParametersDlg.HelpBtnClick . 1-35

TMeasureDlg.OKBtnClick . 1-35

TMeasureDlg.HelpBtnClick . 1-36

TPLDInfoDlg.FormShow . 1-36

TPLDInfoDlg.HelpBtnClick . 1-36

TPlotDlg.OKBtnClick . 1-36

TPlotDlg.HelpBtnClick . 1-37

TPrintPlotDlg.PrinterBitBtnClick . 1-37

TPrintPlotDlg.OKBtnClick . 1-37

TPrintPlotDlg.FormShow . 1-37

TPrintPlotDlg.HelpBtnClick . 1-38

TGeneratorDlg.OKBtnClick . 1-38

TGeneratorDlg.FormShow . 1-38

TGeneratorDlg.HelpBtnClick . 1-39

TStateParametersDlg.FormCreate . 1-39

TStateParametersDlg.TabSetClick . 1-39

TStateParametersDlg.FormShow . 1-40

TStateParametersDlg.OKBtnClick . 1-40

TStateParametersDlg.HelpBtnClick . 1-40

TStartFuzzDlg.OKBtnClick . 1-41

TStartFuzzDlg.HelpBtnClick . 1-41

TStartStateDlg.OKBtnClick . 1-41

TStartStateDlg.HelpBtnClick . 1-41

TTimingForm.UpdateData . 1-42

TTimingForm.Button1Click . 1-42

TTimingForm.FormShow . 1-42

Table of Contents Laboratory Experiment Ball and Beam BB50

iv BB50 Windows Software V1.0

TTimingForm.Button2Click . 1-42

TTimingForm.Button3Click . 1-43

TTimingForm.OnClickBtnSampleCalc . 1-43

FloatToStr2 . 1-43

FloatToStr3 . 1-43

FloatToStr4 . 1-44

StrToFloatMinMax . 1-44

StrToFloatStrMinMax . 1-44

MinMaxi . 1-45

DetectNT . 1-45

1.4 Overview of Classes and DLL Interfaces . 1-46

1.5 References of the DLL Interfaces . 1-49

1.5.1 The DLL Interface BWSERV16 . 1-51

DoService . 1-51

SetParameter . 1-52

GetParameter . 1-52

GetData . 1-52

LockMemory . 1-53

SetDriverHandle . 1-53

ReadFuzzy . 1-53

ReadStatePar . 1-54

WriteStatePar . 1-54

IsDemo . 1-54

CalibrateSen . 1-55

RawSensor . 1-55

MeasureStart . 1-56

MeasureLevel . 1-56

MeasureStatus . 1-56

OpenFuzzy3D . 1-57

Laboratory Experiment Ball and Beam BB50 Table of Contents

BB50 Windows Software V1.0 v

CloseFuzzy3D . 1-57

InfoFuzzy3D . 1-57

CalcFuzzy3D . 1-58

1.5.2 The Class BW502STA in the BWSERV16.DLL 1-59

BB50STA::BB50STA() . 1-60

BB50STA::Calc . 1-60

BB50STA::SetTa . 1-61

BB50STA::Reset . 1-61

BB50STA::Load . 1-61

BB50STA::Save . 1-62

BB50STA::SetStateObserver . 1-62

BB50STA::SetDistObserver . 1-62

BB50STA::geterrors . 1-63

BB50STA::GetV . 1-63

BB50STA::GetFt . 1-63

BB50STA::GetLBD . 1-63

BB50STA::GetABD . 1-63

BB50STA::GetFBD . 1-64

BB50STA::GetBBD . 1-64

BB50STA::GetDCON . 1-64

BB50STA::GetDLBD . 1-64

BB50STA::GetDABD . 1-64

BB50STA::GetDFBD . 1-65

BB50STA::GetDBBD . 1-65

1.5.3 The Class BW502FUZ in the BWSERV16.DLL 1-66

BW502FUZ::BW502FUZ() . 1-66

BW502FUZ::~BW502FUZ() . 1-67

BW502FUZ::Calc . 1-67

BW502FUZ::SelectFuzzyFile . 1-68

Table of Contents Laboratory Experiment Ball and Beam BB50

vi BB50 Windows Software V1.0

BW502FUZ::Save . 1-68

BW502FUZ::SetAngObserver . 1-68

BW502FUZ::SetPosObserver . 1-69

BW502FUZ::getname . 1-69

BW502FUZ::getfname . 1-69

BW502FUZ::geterrors . 1-69

1.5.4 The Class STOREBUF in the BWSERV16.DLL 1-70

STOREBUF::ResetBufIndex . 1-71

STOREBUF::STOREBUF . 1-71

STOREBUF::~STOREBUF() . 1-71

STOREBUF::StartMeasure . 1-72

STOREBUF::WriteValue . 1-72

STOREBUF::SetOutChan . 1-72

STOREBUF::ReadValue . 1-72

STOREBUF::GetBufLen . 1-73

STOREBUF::GetBufTa . 1-73

STOREBUF::GetStatus . 1-73

STOREBUF::GetBufferLevel . 1-73

1.5.5 The Class AFBUF in the BWSERV16.DLL . 1-74

AFBUF::AFBUF() . 1-74

AFBUF::~AFBUF() . 1-74

AFBUF::NewFBuf . 1-75

AFBUF::ReadFBuf . 1-75

AFBUF::WriteFBuf . 1-75

1.5.6 The Class TWOBUFFER in the BWSERV16.DLL 1-76

TWOBUFFER::TWOBUFFER() . 1-77

TWOBUFFER::New2Buffer . 1-77

TWOBUFFER::Write2Buffer . 1-77

TWOBUFFER::Read2Buffer . 1-77

Laboratory Experiment Ball and Beam BB50 Table of Contents

BB50 Windows Software V1.0 vii

1.5.7 The Class Signal in the BWSERV16.DLL . 1-78

SIGNAL::SIGNAL() . 1-78

SIGNAL::InitTime . 1-78

SIGNAL::MakeSignal . 1-79

SIGNAL::ReadNextValue . 1-79

SIGNAL::SetRange . 1-80

SIGNAL::WriteBuffer . 1-80

SIGNAL::Stuetzstellen . 1-80

1.5.8 The DLL Interface PLOT . 1-81

ReadPlot . 1-82

WritePlot . 1-82

Plot . 1-83

GetPlot . 1-84

PrintPlot . 1-84

GetPldInfo . 1-85

2 Driver Functions for BB50 2-1

2.1 The Class DICDRV . 2-1

DICDRV::DICDRV . 2-2

DICDRV::~DICDRV . 2-2

DICDRV::ReadWinkel . 2-2

DICDRV::ReadPosition . 2-3

DICDRV::SetKraft . 2-3

DICDRV::ReadCamera . 2-3

DICDRV::CorrectPos . 2-4

DICDRV::getxcenter . 2-4

DICDRV::getwcenter . 2-4

DICDRV::eichok . 2-4

DICDRV::CheckSystem . 2-5

Table of Contents Laboratory Experiment Ball and Beam BB50

viii BB50 Windows Software V1.0

DICDRV::CheckFree . 2-5

DICDRV::LeftSwitch . 2-5

DICDRV::RightSwitch . 2-5

DICDRV::StartInterrupt . 2-6

DICDRV::TriggerEndstufe . 2-6

DICDRV::LinModell . 2-6

2.2 The Class WDAC98 . 2-7

WDAC98::ReadAnalogVolt . 2-7

WDAC98::WriteAnalogVolt . 2-8

WDAC98::ReadDigital . 2-8

WDAC98::WriteDgital . 2-8

WDAC98::GetCounter . 2-8

WDAC98::GetTimer . 2-9

WDAC98::ReadDDM . 2-9

WDAC98::ResetDDM . 2-9

WDAC98::ReadAllDDM . 2-9

WDAC98::ResetAllDDM . 2-10

3 The Fuzzy Library 3-1

3.1 Introduction to the Structure of the Fuzzy Library . 3-1

3.2 Description of the Classes . 3-2

3.2.1 General . 3-2

3.2.2 Overview of the Classes . 3-2

3.2.3 References of the Classes, their Data and Element Functions 3-4

3.2.3.1 The Class FuzzySet . 3-4

FuzzySet::FuzzySet . 3-4

FuzzySet::FuzzySet . 3-4

FuzzySet::FuzzySet . 3-5

FuzzySet::FuzzySet . 3-5

Laboratory Experiment Ball and Beam BB50 Table of Contents

BB50 Windows Software V1.0 ix

FuzzySet::~FuzzySet . 3-5

FuzzySet::getname . 3-5

FuzzySet::cleary . 3-6

FuzzySet::getxvector . 3-6

FuzzySet::getyvector . 3-6

FuzzySet::getstuetzen . 3-6

FuzzySet::insert . 3-6

FuzzySet::normalize . 3-7

FuzzySet::coa . 3-7

FuzzySet::crisp . 3-7

FuzzySet::conclude . 3-7

FuzzySet::tout . 3-8

FuzzySet::= . 3-8

FuzzySet::*= . 3-9

FuzzySet::+= . 3-9

FuzzySet::<< . 3-9

3.2.3.2 The class FuzzyVar . 3-10

FuzzyVar::FuzzyVar . 3-10

FuzzyVar::~FuzzyVar . 3-10

FuzzyVar::getname . 3-11

FuzzyVar::getsetname . 3-11

FuzzyVar::getsetcount . 3-11

FuzzyVar::add . 3-11

FuzzyVar::check . 3-12

FuzzyVar::norm . 3-12

FuzzyVar::getmode . 3-12

FuzzyVar::getmaxx . 3-12

FuzzyVar::getminx . 3-12

FuzzyVar::get . 3-13

Table of Contents Laboratory Experiment Ball and Beam BB50

x BB50 Windows Software V1.0

FuzzyVar::set . 3-13

FuzzyVar::clear . 3-13

FuzzyVar::out . 3-13

FuzzyVar::getval . 3-14

FuzzyVar::setval . 3-14

FuzzyVar::vsort . 3-15

FuzzyVar::<< . 3-15

3.2.3.3 The class FuzzyRule . 3-16

FuzzyRule::FuzzyRule . 3-16

FuzzyRule::~FuzzyRule . 3-16

FuzzyRule::getname . 3-16

FuzzyRule::addIn . 3-17

FuzzyRule::addOut . 3-17

FuzzyRule::Do . 3-17

FuzzyRule::tout . 3-17

FuzzyRule::<< . 3-18

3.2.3.4 The Class Fuzzy . 3-19

Fuzzy::Fuzzy . 3-19

Fuzzy::Fuzzy . 3-20

Fuzzy::~Fuzzy . 3-20

Fuzzy::read . 3-20

Fuzzy::write . 3-21

Fuzzy::generate . 3-21

Fuzzy::calc . 3-21

Fuzzy::getinputcount . 3-21

Fuzzy::getoutputcount . 3-22

Fuzzy::geterrors . 3-22

Fuzzy::getrulecatch . 3-22

Fuzzy::speed . 3-22

Laboratory Experiment Ball and Beam BB50 Table of Contents

BB50 Windows Software V1.0 xi

Fuzzy::getname . 3-23

Fuzzy::tout . 3-23

Fuzzy::parser . 3-25

Fuzzy::calcsetup . 3-25

Fuzzy::gettoken . 3-26

Fuzzy::defvar . 3-26

Fuzzy::defset . 3-27

Fuzzy::defrule . 3-27

Fuzzy::deflabel . 3-27

Fuzzy::getlabel . 3-28

Fuzzy::killstructures . 3-28

Fuzzy::killfuzzybase . 3-28

Fuzzy::killlabel . 3-28

Fuzzy::out . 3-29

Fuzzy::<< . 3-29

Fuzzy::>> . 3-29

3.3 Description of the File Formats . 3-30

3.3.1 The Format of the Fuzzy Description File (*.FUZ) 3-30

3.3.2 The Format of the Error Output File ERROR.OUT 3-32

3.4 A Very Simple Example . 3-33

3.4.1 The Fuzzy Description File of a Temperature Control 3-33

3.4.2 The C++ Sources of a Temperature Control . 3-33

4 Functions of the PLOT16.DLL 4-1

Version . 4-2

CreateSimplePlotWindow . 4-2

ShowPlotWindow . 4-3

ClosePlotWindow . 4-4

UpdatePlotWindow . 4-4

Table of Contents Laboratory Experiment Ball and Beam BB50

xii BB50 Windows Software V1.0

GetValidPlotHandle . 4-4

AddPlotTitle . 4-4

AddAxisPlotWindow . 4-5

AddXData: . 4-6

AddTimeData: . 4-6

AddYData: . 4-6

SetCurveMode . 4-7

SetPlotMode . 4-7

PrintPlotWindow . 4-9

CreateEmptyPlotWindow . 4-10

5 Interface Functions of the TIMER16.DLL 5-1

LibMain . 5-1

StartTimer . 5-1

StopTimer . 5-2

GetMinMaxTime . 5-2

GetSimTime . 5-2

SetupDriver . 5-3

SelectDriver . 5-3

6 Windows Drivers for DAC98, DAC6214 and DIC24 6-1

OpenDriver . 6-1

SendDriverMessage . 6-2

CloseDriver . 6-4

Laboratory Experiment Ball and Beam BB50 Table of Contents

BB50 Windows Software V1.0 xiii

Table of Contents Laboratory Experiment Ball and Beam BB50

xiv BB50 Windows Software V1.0

1 Source Files of the BB50W Controller Program

1.1 General

The program is a 16-bit application, which may be started only once by the operating systems Windows 3.1 or

Windows95. The desktop is created by means of the program language ’Pascal’, while the actual controller is

realized by a DLL developed with the program language ’C++’. Both program parts are available in source

completely. The program package is completed by

the TIMER16.DLL to handle the cyclic controller calls,

the card drivers DAC98.DRV or DIC24.DRV to access the PC adapter card,

the PLOT16.DLL for the graphic output,

the help file BB50W.HLP,

the run-time library BC450RTL.DLL.

Generating a new executable program is possible only by means of the development systems ’Delphi’ version 1.0

for the desktop and ’Borland C++’ version 4.52 for the controller-DLL. The last may be generated using another

16-bit-C++ compiler in case a suitable project file can be created.

Prior to generating the program the first time please copy the complete content of the enclosed floppy disk to a new

directory of your harddisk by keeping the directory structure (i.e. using the ’Explorer’ to copy to the new directory

BB50).

You will then find the following subdirectories:

BB50DSK

CONTRDLL

EXE

Where BB50DSK contains the Delphi Project File BB50W.DPR together with all the accompanying Pascal source

files to generate the desktop, CONTRDLL contains the Borland Project File BWSERV.IDE with all the

accompanying C++ source files to create the controller-DLL (BWSERV16.DLL). Finally the subdirectory EXE

contains all the additional files required by the executable program (BB50.HLP, BB50W16.INI, DEFAULT.STA,

DEFAULT.FBW, WCONTROL.FUZ, WERROR.FUZ, XCONTROL.FUZ, XERROR.FUZ, DAC98.DRV,

DIC24.DRV,

DUMMY.DRV, TIMER16.DLL, PLOT16.DLL, BC450RTL.DLL).

Attention: After creating a new desktop or a new controller-DLL, the new results are to be copied later to the

subdirectory EXE.

A DEMO version of the program (simulation of the mathematical model of the ball and beam system instead of

accessing the PC adapter card) may be obtained simply by setting the macro __SIMULATION__ in the include file

BWDEFINE.H and generating a new BWSERV16.DLL. Because the resulting DLL has the same name as the DLL

controlling the real system, it should be copied together with all the required files (DUMMY.DRV is recommended

instead of DAC98.DRV and DIC24.DRV)to a different subdirectory (i.e. DEMO) afterwards.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-1

1.2 Global Data and Functions

The file BWDEFINE.H contains some definitions to clarify the readability of the source code and to adjust the

program mode as well as the fixed sampling period. When __SIMULATION__ is defined all program functions

besides system calibration are available for a simulated ball and beam system. The PC adapter card is not required

in this program mode. To control the real system the macro __SIMULATION__ must not be defined!

Used definitions:

#define __SIMULATION__

#define __FUZZY__

#define ScopeBufSize 8

#define SIMTIME 0.05

The file BB50DAT.H contains global data structures which are used in different instances of the software. These

structures are saved in the data files used to store measurements.

// Data structures:

struct PROJECT{

char number[10]; // P342

char name[10]; // BB50

char Titel[10]; // BB50 - Monitor

char Version[10]; // 1.00

char Date[10]; // 22.10.99

char Dummy[10]; // Reserve

};

static struct PROJECT PRJ = {

"P342",

"BB50",

"BB50",

"V2.00",

"22-Oct-99",

"res"

};

CTRLSTATUS {

short controller; // type of active controller

double ta_ms; // adjusted sampling period in [ms]

char fuzname[80]; // "Fuzzy controller" file name

short dummy;

long timeofmeasure; // Date and time of the measurement acquisition

};

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-2 BB50 Windows Software V1.0

struct DATASTRUCT { // Structure to reconstruct the measured data

short nchannel; // Length of the stored measurement vectors (number of channels)

short nvalues; // Number of the measurement vectors (number of samples)

float deltatime; // Time between two samples

};

The Format of the Documentation Data File *.PLD

Measured data stored in a data file are reloadable and may be output in a graphic representation. In addition the

system settings (CTRLSTATUS) which were active during the start of the data acquisition are stored in this file.

They are displayable in a separate window.

The data file contains data in binary format stored in the following order:

The structure PROJEKT PRJ.

The structure CTRLSTATUS.

The structure DATASTRUCT.

The data array with float values (4 bytes per value)

The size of the data array is defined in the structure DATASTRUKT. With the BB50 the number of the stored

channels is always 8 (the length of the measurement vector is 8, i.e. equal to 32 bytes). The vector contains the

following signals:

the position setpoint of the ball in m,

the measured position of the ball in m,

the angle of the beam in rad

the control force in N

the velocity of the ball in m/s,

the angle velocity of the beam in rad/s,

the friction compensation of the beam in N,

the friction compensation of the ball in rad.

The number of the stored measurement acquisitions (vectors) depends on the adjusted values for the sampling

period and the measuring time. The maximum number of measurings is 1024. The time distance between two

successive acquisitions is an integral multiple of the sampling period used by the controller.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-3

1.3 Dialogs and Windows of the Desktop

The programs desktop is written in the program language Pascal. The main window with its menu bar as well as all

of the following dialogs and message boxes are realized by the following files.

The file MAIN.PAS contains the procedures:

ShowHint(Sender: TObject)

 FormCreate(Sender: TObject)

FormShow(Sender: TObject)

FormClose(Sender: TObject; var Action: TCloseAction)

FormDestroy(Sender: TObject)

FileMenuClick(Sender: TObject)

OpenStateClick(Sender: TObject)

SaveStateClick(Sender: TObject)

SaveStateasClick(Sender: TObject)

OpenFuzzyClick(Sender: TObject)

SaveFuzzyasClick(Sender: TObject)

LoadPlotData1Click(Sender: TObject)

SavePlot1Click(Sender: TObject)

Print1Click(Sender: TObject)

PrintSetup1Click(Sender: TObject)

ExitItemClick(Sender: TObject)

IOInterface1Click(Sender: TObject)

DAC98Click(Sender: TObject)

DIC24Click(Sender: TObject)

DACSetupClick(Sender: TObject)

Edit1Click(Sender: TObject)

StateControllerSetupClick(Sender: TObject)

FuzzyControllerSetupClick(Sender: TObject)

Run1Click(Sender: TObject)

StateController1Click(Sender: TObject)

FuzzyController2Click(Sender: TObject)

StopController1Click(Sender: TObject)

CalibrateSensors1Click(Sender: TObject)

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-4 BB50 Windows Software V1.0

StartMeasuring1Click(Sender: TObject)

SetpointGenerator1Click(Sender: TObject)

View1Click(Sender: TObject)

PlotMeasuredData1Click(Sender: TObject)

PlotFileData1Click(Sender: TObject)

ParametersfromPLDFile1Click(Sender: TObject)

Fuzzy3D1Click(Sender: TObject)

Timing1Click(Sender: TObject)

Contents1Click(Sender: TObject)

SearchforHelpon1Click(Sender: TObject)

HowtoUseHelp1Click(Sender: TObject)

About1Click(Sender: TObject)

Timer1Timer(Sender: TObject)

PaintBox1Click(Sender: TObject)

MeasLabelClick(Sender: TObject)

The file SINGLEIN.PAS contains the procedure:

 WndProc(var Msg: TMessage)

The file ABOUT.PAS contains the procedure:

 FormShow(Sender: TObject)

The file CALIB.PAS contains the procedures:

CenterBBtnClick(Sender: TObject)

LeftBBtnClick(Sender: TObject)

RightBBtnClick(Sender: TObject)

FormShow(Sender: TObject)

HelpBtnClick(Sender: TObject)

The file FUZ3D.PAS contains the procedures:

 rescale

recalc

calcrot

calctrans(ix,iy,iz : double; var ox,oy,oz : double)

FormShow(Sender: TObject)

FormHide(Sender: TObject)

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-5

FuzzyCBoxChange(Sender: TObject)

DrawSquare(can : TCanvas; j, i, z0, z1, z2, z3 : Integer)

DrawCoors(can : TCanvas)

DrawCoors2(can : TCanvas)

DrawMark(can : TCanvas)

PaintBoxPaint(Sender: TObject)

ScrollBar1Change(Sender: TObject)

ScrollBar2Change(Sender: TObject)

PaintBoxMouseDown(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

PaintBoxMouseMove(Sender: TObject; Shift: TShiftState; X, Y: Integer);

PaintBoxMouseUp(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

KoorsCBoxClick(Sender: TObject)

Koors2CBoxClick(Sender: TObject)

ColorCBoxClick(Sender: TObject)

LowResCBoxClick(Sender: TObject)

PrintBBtnClick(Sender: TObject)

MarkCBoxClick(Sender: TObject)

Timer1Timer(Sender: TObject)

HelpBtnClick(Sender: TObject)

The file FUZZYPAR.FUZ contains the procedures:

Big

Small

FormCreate(Sender: TObject)

FormDestroy(Sender: TObject)

FormShow(Sender: TObject)

Sel1BBtnClick(Sender: TObject)

Ed1BBtnClick(Sender: TObject)

CancelEdBBtnClick(Sender: TObject)

SaveEdBBtnClick(Sender: TObject)

HelpBtnClick(Sender: TObject)

The file MEASURE.PAS contains the procedures:

 OKBtnClick(Sender: TObject)

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-6 BB50 Windows Software V1.0

 HelpBtnClick(Sender: TObject)

The file PLDINFO.PAS contains the procedures:

 FormShow(Sender: TObject)

 HelpBtnClick(Sender: TObject)

The file PLOT.PAS contains the procedures:

 OKBtnClick(Sender: TObject)

 HelpBtnClick(Sender: TObject)

The file PRINTPLT.PAS contains the procedures:

 PrinterBitBtnClick(Sender: TObject)

 OKBtnClick(Sender: TObject)

 FormShow(Sender: TObject)

 HelpBtnClick(Sender: TObject)

The file SETPOINT.PAS contains the procedures:

 OKBtnClick(Sender: TObject)

 FormShow(Sender: TObject)

 HelpBtnClick(Sender: TObject)

The file STATEPAR.PAS contains the procedures:

FormCreate(Sender: TObject)

TabSetClick(Sender: TObject)

FormShow(Sender: TObject)

OKBtnClick(Sender: TObject)

HelpBtnClick(Sender: TObject)

The file STFUZ.PAS contains the procedures:

OKBtnClick(Sender: TObject)

HelpBtnClick(Sender: TObject)

The file STSTATE.PAS contains the procedures:

OKBtnClick(Sender: TObject)

HelpBtnClick(Sender: TObject)

The file TIMING.PAS contains the procedures:

UpdateData

Button1Click(Sender: TObject)

FormShow(Sender: TObject)

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-7

Button2Click(Sender: TObject)

Button3Click(Sender: TObject)

OnClickBtnSampleCalc(Sender: TObject)

The file TOOLS.PAS contains the functions:

 FloatToStr2(f : Single) : string

 FloatToStr3(f : Single) : string

 FloatToStr4(f : Single) : string

 StrToFloatMinMax(s : string; min,max : double) : double

 StrToFloatStrMinMax(s : string; var val : double; min,max : double) : string

 MinMaxi(val, min, max : Integer) : Integer

 DetectNT : Boolean

The file DLLS.PAS contains besides the global data definitions the interface definitions for the DLL’s BWSERV16

and TIMER16.

Global Data:

type ServiceParameter = record

controller : WORD;

stateobserver : WORD;

stateError : WORD;

fuzzyobserver : WORD;

fuzzyError : WORD;

dummy1 : WORD;

dummy2 : WORD;

spshape : WORD;

ft : array[0..3] of double;

filter : double;

lbd : array[0..3] of double;

abd : array[0..3] of double;

fbd : array[0..3] of double;

bbd : array[0..1] of double;

dcon : double;

dabd : double;

dbbd : double;

dfbd : array[0..3] of double;

dlbd : array[0..3] of double;

name : array[0..79] of char;

spoffset, spamplitude, spperiode : double;

 end;

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-8 BB50 Windows Software V1.0

type ServiceData = record

setpoint : double;

pos, dpos, angle, dangle : double;

out : double;

fuzhelp : double;

state : WORD;

dummy : array[0..2] of WORD;

end;

type Fuzzy3DInfo = record

size : longint;

idx, idy, idz : Integer;

incount, outcount : Integer;

xname : array[0..79] of char;

yname : array[0..79] of char;

zname : array[0..79] of char;

xmin, xmax : double;

ymin, ymax : double;

zmin, zmax : double;

end;

param : ServiceParameter ;

data : ServiceData;

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-9

TMainForm.ShowHint

ShowHint(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure ShowHint is called, when the object of type TMainForm appears at the screen.

TMainForm.FormCreate

FormCreate(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure FormCreate creates an instance of an object of type TMainForm. With this

another instance (single) of type SingleInstance is created, which guarantees that this application

(the BB50W program) may be started only once.

TMainForm.FormShow

FormShow(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure FormShow is called, when the object of type TMainForm appears at the screen.

At the same time the application BB50W is started with the selection of the controller DLL, here

BWSERV16.DLL, and the driver for the adapter card (the drivers file name is contained in the

file BB50W16.INI). The check marks below the menu item "IO-Interface" are set accordingly.

The parameter structure param is read from the BWSER16.DLL. The variable WithFuzzy is set

according to the existence of a fuzzy controller. Then the structure is initialized with default values

(no controller, position setpoint to 0, period to 20s) and transferred (SetParameter) again to the

controller inside the BWSERV16.DLL. The program version DEMO is detected, when the

function IsDemo returns TRUE. Only in this case the menu items "IO-Interface" and "Calibrate

Sensors" are disabled and the string "(Demo-Version)" is appended to the title line of the monitor

window. The timers for the sampling period of the controller (StartTimer, TIMER16.DLL) as

well as for the periodic update of the monitor window are started. The sensor inputs are calibrated

automatically (CalibrateSensors1Click) in case of a real system.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-10 BB50 Windows Software V1.0

TMainForm.FormClose

FormClose(Sender: TObject; var Action: TCloseAction)

Parameters: Sender is a reference to the calling object.

var Action is not used.

Description The procedure FormClose stops the timer for the sampling period of the controller.

TMainForm.FormDestroy

FormDestroy(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure FormDestroy is called before the object of type TMainForm is removed from the

memory. In this connection the animation picture as well as the application are released.

TMainForm.FileMenuClick

FileMenuClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure FileMenuClick is an event handler activated by clicking once on the menu item

"File". The menu item "Save Recorded Data" is enabled when the memory contains data from a

measurement acquisition. Otherwise this menu item is disabled.

TMainForm.OpenStateClick

OpenStateClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure OpenStateClick is an event handler activated by clicking once on the menu item

"File/Load State Controller". A Windows system dialog appears allowing for the selection of a

file name (extension *.STA) from which all the matrices of a state controller are to be loaded

(ReadStatePar). An error message appears when a non-existing file is selected.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-11

TMainForm.SaveStateClick

SaveStateClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure SaveStateClick is an event handler activated by clicking once on the menu item

"File/Save State Controller". All the matrices of the state controller contained in the memory are

written to that file, from which the same matrices have been read previously (OpenStateClick).

After starting the program this file is DEFAULT.STA. An error message will appear, when the

data could not be written successfully to this file.

TMainForm.SaveStateasClick

SaveStateasClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure SaveStateasClick is an event handler activated by clicking once on the menu item

"File/Save State Controller as...". A Windows system dialog appears to select a new file name

(extension *.STA) for storing (WriteStatePar) all the matrices of the state controller contained

in the memory. An error message will appear, when the data could not be written successfully to

this file.

TMainForm.OpenFuzzyClick

OpenFuzzyClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure OpenFuzzyClick is an event handler activated by clicking once on the menu item

"File/Load Fuzzy Controller". A Windows system dialog appears a file name (extension *.FBW).

Such a file is expected to be a "fuzzy-controller" file containing four other file names of fuzzy

description files from which all the fuzzy variables and rules are to be read (ReadFuzzy). The

selected "fuzzy-controller" file name is written to the parameter structure param. Selecting a file

name of a file, which does not exist, will result in an error message.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-12 BB50 Windows Software V1.0

TMainForm.SaveFuzzyasClick

SaveFuzzyasClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure SaveFuzzyasClick is an event handler activated by clicking once on the menu

item "File/Save Fuzzy Controller as...". A Windows system dialog appears allowing for the

selection of a file name (extension *.FBW). The file names of the current four fuzzy description

files are to be written to the selected file. These names are read from the current "fuzzy-controller"

file (name is taken from param) and written to the selected "fuzzy-controller" file. The new

"fuzzy-controller" file name is stored in param.

TMainForm.LoadPlotData1Click

LoadPlotData1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure LoadPlotData1Click is an event handler activated by clicking once on the menu

item "File/Load Recorded Data". A Windows system dialog appears allowing for the selection

of a file name of a so-called documentation file (extension *.PLD), from which measured data

are to be read (ReadPlot). Selecting a file, which does not exist will result in an error message.

TMainForm.SavePlot1Click

SavePlot1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure SavePlot1Click is an event handler activated by clicking once on the menu item

"File/Save Recorded Data". A Windows system dialog appears allowing for the selection of a file

name of a so-called documentation file (extension *.PLD), to which measured data contained in

the memory are to be written (WritePlot). An error message will appear, when the data could not

be written successfully to the selected file.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-13

TMainForm.Print1Click

Print1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure Print1Click is an event handler activated by clicking once on the menu item

"File/Print". A modal dialog (PrintPlotDlg) appears to select previously created plot windows,

which are to be printed to an output device (i.e. printer).

TMainForm.PrintSetup1Click

PrintSetup1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure PrintSetup1Click is an event handler activated by clicking once on the menu item

"File/Print Setup". The standard printer setup dialog of Windows is called to select and adjust the

output device.

TMainForm.ExitItemClick

ExitItemClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure ExitItemClick is an event handler activated by clicking once on the menu item

"File/Exit" or by pressing Shift+F4. The current application, the program BB50W will be

terminated.

TMainForm.IOInterface1Click

IOInterface1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure IOInterface1Click is an event handler activated by clicking once on the menu

item "IO-Interface". The following two menu items to select an adapter card driver for the DAC98

or DIC24 are enabled only, when the corresponding driver exists in the current directory. The

menu item to select the dialog for adjusting the adapter card address is enabled only, when one

of the above drivers is marked.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-14 BB50 Windows Software V1.0

TMainForm.DAC98Click

DAC98Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure DAC98Click is an event handler activated by clicking once on the menu item

"IO-Interface/DAC98". The name of the driver file DAC98.DRV is written to the file

BB50W16.INI. After stopping the timer (StopTimer) controlling the sampling period of the

controller the driver DAC98.DRV is selected for the BWSERV16.DLL (SelectDriver). Error

messages will appear, when stopping the timer or selecting the driver failed. The check marks of

the corresponding menu item are set accordingly and the dialog DACSetupClick to adjust the

adapter card address is called automatically.

TMainForm.DIC24Click

DIC24Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure DIC24Click is an event handler activated by clicking once on the menu item

"IO-Interface/DAC98". The name of the driver file DIC24.DRV is written to the file

BB50W16.INI. After stopping the timer (StopTimer) controlling the sampling period of the

controller the driver DIC24.DRV is selected for the BWSERV16.DLL (SelectDriver). Error

messages will appear, when stopping the timer or selecting the driver failed. The check marks of

the corresponding menu item are set accordingly and the dialog DACSetupClick to adjust the

adapter card address is called automatically.

TMainForm.DACSetupClick

DACSetupClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure DACSetupClick is an event handler activated by clicking once on the menu item

"IO-Interface/Setup". After stopping the timer (StopTimer) controlling the sampling period of

the controller the dialog SetupDriver of the TIMER16.DLL appears to adjust the adapter card

address of the corresponding driver. Error messages will be presented, when stopping the timer

failed or when the dialog could not adjust the address correctly. Terminating this dialog will start

the sensor calibration dialog (CalibrateSensors1Click) automatically, which also restarts the

timer.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-15

TMainForm.Edit1Click

Edit1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure Edit1Click is an event handler activated by clicking once on the menu item "Edit".

The following menu item "Edit/Fuzzy Controller Parameter" is enabled only, when the internal

flag WithFuzzy is set.

TMainForm.StateControllerSetupClick

StateControllerSetupClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure StateControllerSetupClick is an event handler activated by clicking once on the

menu item "Edit/State Controller Parameter". The modal dialog (StateParameterDlg) will

appear to display and adjust all the parameters of the state controller.

TMainForm.FuzzyControllerSetupClick

FuzzyControllerSetupClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure FuzzyControllerSetupClick is an event handler activated by clicking once on the

menu item "Edit/Fuzzy Controller Parameters". The modal dialog (FuzzyParameterDlg) will

appear to display and adjust all the parameters of the fuzzy controller.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-16 BB50 Windows Software V1.0

TMainForm.Run1Click

Run1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure Run1Click is an event handler activated by clicking once on the menu item "Run".

As long as no controller is selected the menu items to select the state controller and the fuzzy

controller are enabled and the menu items to stop a controller and to adjust the setpoint generator

are disabled. The last two menu items are enabled when any controller is active. The menu items

to select a controller will remain disabled when the last sensor calibration failed.

TMainForm.StateController1Click

StateController1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure StateController1Click is an event handler activated by clicking once on the menu

item "Run/State Controller" or by pressing "F2". When the following dialog StartStateDlg is

terminated with the "Ok" button, the check mark for the selected state controller and the

corresponding parameter of the structure param are set. This structure is then transferred

(SetParameter) to the BWSERV16.DLL.

TMainForm.FuzzyController2Click

FuzzyController2Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure FuzzyController2Click is an event handler activated by clicking once on the

menu item "Run/Fuzzy Controller" or by pressing "F3". When the following dialog StartFuzzDlg
is terminated with the "Ok" button, the check mark for the selected fuzzy controller and the

corresponding parameter of the structure param are set. This structure is then transferred

(SetParameter) to the BWSERV16.DLL.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-17

TMainForm.StopController1Click

StopController1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure StopController1Click is an event handler activated by clicking once on menu

item "Run/Stop Controller" or by pressing "F4". The check marks as well as the corresponding

controller flags of the structure param are reset. This structure is then transferred (SetParameter)

to the BWSERV16.DLL.

TMainForm.CalibrateSensors1Click

CalibrateSensors1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure CalibrateSensors1Click is an event handler activated by clicking once on the

menu item "Run/Calibrate Sensors". When, after stopping (StopController1Click) the

controller, the following modal dialog CallibrateDlg is terminated with the "Ok" button, the state

of the sensor calibration is taken as successful and the corresponding check mark is set. The timer

controlling the sampling period of the controller is restarted if it is not still running. If restarting

the timer failed a corresponding error message will appear.

TMainForm.StartMeasuring1Click

StartMeasuring1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure StartMeasuring1Click is an event handler activated by clicking once on the menu

item "Run/Start Measuring" or by pressing "F5". The conditions of a measurement acquisition

are adjusted by means of the following dialog MeasureDlg.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-18 BB50 Windows Software V1.0

TMainForm.SetpointGenerator1Click

SetpointGenerator1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure SetpointGenerator1Click is an event handler activated by clicking once on the

menu item "Run/Start Measuring" or by pressing "F6". The conditions for the setpoint of the ball

position are adjusted by means of the following dialog GeneratorDlg.

TMainForm.View1Click

View1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure View1Click is an event handler activated by clicking once on the menu item

"View". The following menu items "Plot Measured Data", "Plot File Data" and "Parameters from

*.PLD File" are enabled only, when the memory contains data either from a previous measurement

acquisition or after selecting a so-called documentation file.

TMainForm.PlotMeasuredData1Click

PlotMeasuredData1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure PlotMeasuredData1Click is an event handler activated by clicking once on the

menu item "View/Plot Measured Data". Those curves of a previous measurement acquisition are

selected by means of the following dialog PlotDlg, which are to be presented in a plot window.

TMainForm.PlotFileData1Click

PlotFileData1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure PlotFileData1Click is an event handler activated by clicking once on the menu

item "View/Plot File Data". Those curves of a loaded documentation file are selected by means

of the following dialog PlotDlg, which are to be presented in a plot window.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-19

TMainForm.ParametersfromPLDFile1Click

ParametersfromPLDFile1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure ParametersfromPLDFile1Click is an event handler activated by clicking once

on the menu item "View/Parameters from *.PLD File". The parameters of the documentation file

are displayed in a window by means of the following dialog PLDInfoDlg.

TMainForm.Fuzzy3D1Click

Fuzzy3D1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure Fuzzy3D1Click is an event handler activated by clicking once on the menu item

"View/Fuzzy 3D". The following dialog Show3DFuzDlg will present a plot window containing

the 3-dimensional characteristic of a selectable fuzzy description file.

TMainForm.Timing1Click

Timing1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure Timing1Click is an event handler activated by clicking once on the menu item

"View/Timing". The visibility of a timing window (TimingForm) is toggled. It displays the

minimum and maximum values of the sampling period or calculation time in [ms].

TMainForm.Contents1Click

Contents1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure Contents1Click is activated by clicking once on the menu item "Help/Contents"

to display the contents of the help file BB50.HLP.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-20 BB50 Windows Software V1.0

TMainForm.SearchforHelpon1Click

SearchforHelpon1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure SearchforHelpon1Click is activated by clicking once on the menu item

"Help/Search for Help On..." to start the Windows dialog to search for defined keywords.

TMainForm.HowtoUseHelp1Click

HowtoUseHelp1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure HowtoUseHelp1Click is activated by clicking once on the menu item "Help/How

to Use Help" to start the Windows dialog displaying hints how to use the help function.

TMainForm.About1Click

About1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure About1Click is activated by clicking once on the menu item "Help/About..." to

display a window containing information about the program.

TMainForm.Timer1Timer

Timer1Timer(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure Timer1Timer is called every 200 ms by means of a timer. The data structure data

of controller in the BWSERV16.DLL is read and the contents of the monitor in the main window

are updated. This includes the current controller type, the position setpoint, the measured values

for the ball position and beam angle, the control signal, the state of the measurement acquisition

as well as an updated animation picture.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-21

TMainForm.PaintBox1Click

PaintBox1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure PaintBox1Click is activated by moving the mouse above the animation picture

and pressing any mouse button. The setpoint generator dialog (by means of

SetpointGenerator1Click) is called directly, when a controller is active.

TMainForm.MeasLabelClick

MeasLabelClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure MeasLabelClick is activated by moving the mouse above the area displaying the

progress of the measurement acquisition and pressing any mouse button. The measurement

acquisition dialog (by means of StartMeasuring1Click) is called directly, when a controller is

active.

TSingleInstance.WndProc

WndProc(var Msg: TMessage)

Parameters: var Msg is the current Windows system message received by this virtual window.

Description The procedure WndProc is a Windows message handler for the virtual window of type

SingleInstance, which determines by checking the parameters Msg, wParam and lParam if an

instance of this application was called already. In this case this application is terminated.

TAboutBox.FormShow

FormShow(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure FormShow is called, when the object of type TAboutBox is displayed on the

screen. Short information about the program (name, version, copyright, required PC adapter card)

are presented in a window.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-22 BB50 Windows Software V1.0

TCallibrateDlg.CenterBBtnClick

CenterBBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure CenterBBtnClick is an event handler activated by clicking once on the upper

"Start" button inside the "BB50 Calibration Dialog". The controller type is set to WAITING and

the structure param is transferred to the BWSERV16.DLL. When the timer for the sampling

period of the controller is running, the upper field in the dialog appears in a green background

colour indicating an active sensor calibration for the zero-angle of the beam and for the

zero-position of the ball. If the timer is not running or the sensor calibration failed the colour of

the upper field is changed to red, the "Start" button is replaced by a "Retry" button and a

corresponding error message is presented. In case of a successful sensor calibration, the colour

of the upper field is changed to white and the next calibration step (LeftBBtnClick) is started

automatically.

TCallibrateDlg.LeftBBtnClick

LeftBBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure LeftBBtnClick is an event handler activated by clicking once on the "Start" button

in the middle of the "BB50 Calibration Dialog". The field on the middle of the dialog appears in

a green background colour indicating an active sensor calibration for left-most position of the

ball. The required angle of the beam is initiated automatically. If the sensor calibration failed the

colour of the field in the middle is changed to red, the "Start" button is replaced by a "Retry"

button and a corresponding error message is presented. In case of a successful sensor calibration,

the colour of the field in the middle is changed to white and the next calibration step

(RightBBtnClick) is started automatically.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-23

TCallibrateDlg.RightBBtnClick

RightBBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure RightBBtnClick is an event handler activated by clicking once on the lower "Start"

button inside the "BB50 Calibration Dialog". The lower field of the dialog appears in a green

background colour indicating an active sensor calibration for right-most position of the ball. The

required angle of the beam is initiated automatically. If the sensor calibration failed the colour of

the lower field is changed to red, the "Start" button is replaced by a "Retry" button and a

corresponding error message is presented. In case of a successful sensor calibration, the colour

of the lower field is changed to white, the controller type is set to NONE and the structure param

is transferred to the BWSERV16.DLL.

TCallibrateDlg.FormShow

FormShow(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure FormShow is called, when the object of type TCallibrateDlg is displayed on the

screen. The timer for the sampling period of the controller is started. No error is generated if the

timer is still running. The three fields assigned to the calibration steps of the "BB50 Calibration

Dialog" are displayed with a blue background colour. Only the "Start" button of the upper field

is enabled. The user has to follow the instruction to "align the beam horizontally and position the

ball in the middle of the beam", that means the positions are to be obtained manually, before

pressing the enabled "Start" button. Otherwise the calibration of the camera signal for the ball

position as well the calibration of the incremental encoder signal for the beam angle will fail.

TCallibrateDlg.HelpBtnClick

HelpBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure HelpBtnClick is an event handler activated by clicking once on the "Help" button

in the "BB50 Calibration Dialog". The corresponding section of the help file BB50.HLP will be

displayed in a window on the screen.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-24 BB50 Windows Software V1.0

TShow3DFuzDlg.rescale

rescale

Description The procedure rescale calculates the scaling factors as well as initial values for the axes X, Y and

Z such that the value ranges of the 3 fuzzy variables may be displayed in a cube with an edge

length of 255.

TShow3DFuzDlg.recalc

recalc

Description The procedure recalc calculates the values of the fuzzy output variable for the complete value

ranges of the fuzzy input variables with respect to the currently selected step width and based on

the fuzzy object contained in the memory. The calculated vales are stored to the byte field dat.

TShow3DFuzDlg.calcrot

calcrot

Description The procedure calcrot calculates the values of the Euler rotation matrix depending on the rotation

angles a and b. The angle a defines the rotation around the X-axis while the angle b defines the

rotation around the Y-axis.

TShow3DFuzDlg.calctrans

calctrans(ix,iy,iz : double; var ox,oy,oz : double)

Parameters: ix x-co-ordinate original point.

iy y-co-ordinate original point.

iz z-co-ordinate original point.

var ox x-co-ordinate after rotation and projection.

var oy y-co-ordinate after rotation and projection.

var oz z-co-ordinate after rotation and projection.

Description The procedure calctrans calculates new co-ordinates for the 3-dimensional Cartesian

co-ordinates of an original point by applying the Euler rotation matrix and calculating the

projection to a fixed Y-plane.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-25

TShow3DFuzDlg.FormShow

FormShow(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure FormShow is called, when the object of type TShow3DFuzDlg is displayed on

the screen. The dialog "Show Fuzzy 3D" appears to present the 3-dimensional characteristic of a

fuzzy controller with two input variables and one output variable. The attributes of the

characteristic itself are changeable interactively by setting checkboxes, scroll bars or by moving

the mouse. Initial values are defined for a bitmap of suitable size, the step width for the

characteristic, the co-ordinates of the observer position as well as for the projection plane. The

step width determines the number of partial areas along the X-axis and the Y-axis. The listbox to

select a fuzzy description file is filled with the four names contained in the "fuzzy-controller" file.

The name of this file is taken from the structure param. The checkbox to mark the current

operating point is enabled only, when the active controller is a fuzzy controller. The characteristic

for the first fuzzy description file is displayed automatically by FuzzyBoxChange as a bitmap in

the left field of the dialog. The mapping of the characteristic is calculated such that an observer

looks in the middle of a cube placed behind the screen, where the cube is surrounding the

characteristic.

TShow3DFuzDlg.FormHide

FormHide(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure FormHide is called, when the object of type TShow3DFuzDlg has to disappear

from the screen. The checkbox to mark the operating point in the characteristic as well as the

timer are disabled, the bitmap is released.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-26 BB50 Windows Software V1.0

TShow3DFuzDlg.FuzzyCBoxChange

FuzzyCBoxChange(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure FuzzyCBoxChange generates a new fuzzy object with respect to the currently

fuzzy description file, which was selected from the listbox. When the selected file does not exist,

a corresponding error message is presented. The text field below the listbox will contain the

updated names and value ranges of the fuzzy variables belonging to the fuzzy object with two

input variables and one output variable. The fuzzy variables are assigned to the X-, Y- and Z-axis

accordingly. The corresponding characteristic is calculated and displayed as a bitmap. At the end

the fuzzy object is removed again from the memory. A possibly running timer is stopped during

the run-time of this procedure.

TShow3DFuzDlg.DrawSquare

DrawSquare(can : TCanvas; j, i, z0, z1, z2, z3 : Integer)

Parameters: can is an identifier for a device context.

j is the index of the partial area along the X-axis.

i is the index of the partial area along the Y-axis.

z0 is the edge point 1 (Z-value) of the partial area.

z1 is the edge point 2 (Z-value) of the partial area.

z2 is the edge point 3 (Z-value) of the partial area.

z3 is the edge point 4 (Z-value) of the partial area.

Description The procedure DrawSquare draws the partial area defined by its edge points (zo, z1, z2, z3) taken

as base points with respect to the Z-axis and defined by the indexes (j, i) along the X- and Y-axis

as a polygon on the projection plane, which is identified by the device context can. The appearance

of the polygon depends on the setting of further checkboxes. The polygon gets a black coloured

frame, when "Grid" (GridCBox) is set, is displayed as a surface, when "Surface" (SurfaceCBox)

is set, the surface is drawn with a grey scale with decreasing darkness for increasing Z-values or

with a colour changing from red to blue, when "Colour" (ColorCBox) is set in addition.

TShow3DFuzDlg.DrawCoors

DrawCoors(can : TCanvas)

Parameters: can is an identifier for a device context.

Description The procedure DrawCoors draws the edges of the cube surrounding the characteristic as black

coloured lines on the projection plane identified by the device context can.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-27

TShow3DFuzDlg.DrawCoors2

DrawCoors2(can : TCanvas)

Parameters: can is an identifier for a device context.

Description The procedure DrawCoors2 draws the 3-dimensional axes crossing in the middle of the cube

surrounding the characteristic as black coloured lines on the projection plane identified by the

device context can.

TShow3DFuzDlg.DrawMark

DrawMark(can : TCanvas)

Parameters: can is an identifier for a device context.

Description The procedure DrawMark draws the partial area, which is nearest to the current operating point

of the fuzzy controller, as a green coloured area on the projection plane identified by the device

context can. The operating point results from the current sensor values or its differentiations (see

parameter structure data) with respect to the currently selected fuzzy description file.

TShow3DFuzDlg.PaintBoxPaint

PaintBoxPaint(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure PaintBoxPaint calculates a new bitmap representing a complete characteristic and

copies this bitmap to the screen memory only, when needRedraw is set. The complete

characteristic consists of the partial areas defined by its base points contained in the byte field

dat. The characteristic is completed by the edges of the cube, by the axes crossing or marking of

the operating point, when the checkboxes "Co-ordinate box" (KoorsCBox), "Co-ordinate system"

(Koors2CBox) or "Mark" (MarkCBox) are set accordingly.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-28 BB50 Windows Software V1.0

TShow3DFuzDlg.ScrollBar1Change

ScrollBar1Change(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure ScrollBar1Change maps the current position of the scroll mark to an angle in the

range from -180 to +180, which is taken as a rotation angle around the X-axis. If the absolute

change of the rotation angle is greater than 18, the characteristic is updated by means of

PaintBoxPaint.

TShow3DFuzDlg.ScrollBar2Change

ScrollBar2Change(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure ScrollBar2Change maps the current position of the scroll mark to an angle in the

range from 0 to 360, which is taken as a rotation angle around the Y-axis. If the absolute change

of the rotation angle is greater than 18, the characteristic is updated by means of PaintBoxPaint.

TShow3DFuzDlg.PaintBoxMouseDown

PaintBoxMouseDown(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y:

Integer);

Description The procedure PaintBoxMouseDown is called, when the mouse is moved above the bitmap field

to display the characteristic and when a mouse button is pressed. If the left mouse button is pressed

the global co-ordinates lastX, lastY are set equal to the mouse position and the variable lastBtn is

set to TRUE.

TShow3DFuzDlg.PaintBoxMouseMove

PaintBoxMouseMove(Sender: TObject; Shift: TShiftState; X, Y: Integer);

Description The procedure PaintBoxMouseMove is called, when the mouse is moved above the bitmap field

to display the characteristic. If the variable lastBtn is set at the same time the current mouse

position is mapped to new positions of the scrollbars to define the rotation angles around the

X-axis and the Y-axis. The modified scrollbar positions (be means of ScrollBar1Change,

ScrollBar2Change) will then result in an updated output with a rotated characteristic.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-29

TShow3DFuzDlg.PaintBoxMouseUp

PaintBoxMouseUp(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y:

Integer);

Description The procedure PaintBoxMouseUp is called, when the mouse is moved above the bitmap field to

display the characteristic and when none of the mouse buttons is pressed. The variable lastBtn is

reset.

TShow3DFuzDlg.KoorsCBoxClick

KoorsCBoxClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure KoorsCBoxClick is an event handler activated by clicking once on the checkbox

"Co-ordinate box". The output of the characteristic is with or without a surrounding cube

according to the new setting of the checkbox.

TShow3DFuzDlg.Koors2CBoxClick

Koors2CBoxClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure Koors2CBoxClick is an event handler activated by clicking once on the checkbox

"Co-ordinate system". The output of the characteristic is with or without an axes crossing

according to the new setting of the checkbox.

TShow3DFuzDlg.ColorCBoxClick

ColorCBoxClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure ColorCBoxClick is an event handler activated by clicking once on the checkbox

"Colour". The output of the characteristic is with grey or coloured partial areas according to the

new setting of the checkbox.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-30 BB50 Windows Software V1.0

TShow3DFuzDlg.LowResCBoxClick

LowResCBoxClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure LowResCBoxClick is an event handler activated by clicking once on the checkbox

"Low resolution". The updated output displays the characteristic with smaller (step width = 12)

or greater (step width = 25) partial areas according to the new setting of the checkbox.

TShow3DFuzDlg.PrintBBtnClick

PrintBBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure PrintBBtnClick is an event handler activated by clicking once on the "Print"

button of the "Show Fuzzy 3D" dialog. The Windows system dialog appears to select an output

device for the hardcopy of the complete "Show Fuzzy 3D" dialog.

TShow3DFuzDlg.MarkCBoxClick

MarkCBoxClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure MarkCBoxClick is an event handler activated by clicking once on the checkbox

"Mark". The updated output of the characteristic will contain a partial area indicating the current

operating point according to the setting of the checkbox. The timer state is set equal to the setting

of the checkbox, that means when the operating point is to be indicated the timer will produce an

updated characteristic periodically.

TShow3DFuzDlg.Timer1Timer

Timer1Timer(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure Timer1Timer is called by a timer every 200ms, as long as this timer is enabled.

The state of the timer is set equal to the setting of the checkbox "Mark". The output of the

characteristic is updated.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-31

TShow3DFuzDlg.HelpBtnClick

HelpBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure HelpBtnClick is an event handler activated by clicking once on the "Help" button

in the "Show Fuzzy 3D" dialog. The corresponding section of the help file BB50.HLP will be

displayed in a window on the screen.

TFuzzyParametersDlg.Big

Big

Description The procedure Big expands the dialog by another edit field below the dialog and two additional

button. The content of the edit field is erased.

TFuzzyParametersDlg.Small

Small

Description The procedure Small removes the edit field and its accompanying two buttons from the lower

part of the dialog. The content of the edit field is erased. The name of the fuzzy description file

belonging to the edit field is reset to NONAME.FUZ.

TFuzzyParametersDlg.FormCreate

FormCreate(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure FormCreate creates an instance of type TFuzzyParametersDlg. A string list is

generated to store the names of the fuzzy description files.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-32 BB50 Windows Software V1.0

TFuzzyParametersDlg.FormDestroy

FormDestroy(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure FormDestroy is called before the object of type TFuzzyParametersDlg is removed

from the memory. The string list containing the names of the fuzzy is erased.

TFuzzyParametersDlg.FormShow

FormShow(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure FormShow is called, when the object of type TFuzzyParametersDlg is displayed

on the screen. At first only the upper part of the "Fuzzy Controller Parameters" dialog is presented.

The four fields (labelled "Position Controller", "Angle Controller", "Position Observer" and

"Angle Observer") display the names of the accompanying fuzzy description files. These names

are load from the "fuzzy-controller" file, the name of which is read from the structure param. If

this file does not exist a corresponding error message will appear.

TFuzzyParametersDlg.Sel1BBtnClick

Sel1BBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure Sel1BBtnClick is an event handler activated by clicking once on one of the

"Select" buttons of the "Fuzzy Controller Parameters" dialog. A Windows system dialog will

appear to select the name of a fuzzy description file (extension *.FUZ). The selected name will

be displayed left to the "Select" button, when an existing file was chosen.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-33

TFuzzyParametersDlg.Ed1BBtnClick

Ed1BBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure Ed1BBtnClick is an event handler activated by clicking once on one of the "Edit"

buttons of the "Fuzzy Controller Parameters" dialog. The dialog will be expanded by an edit field

and two additional buttons ("Save", "Abort"). If the fuzzy description file with the name displayed

at the left side in the field of the activated "Edit" button exists its content is shown in the edit field

(variable Memo1). Typical edit functions are now allowed inside the edit field.

TFuzzyParametersDlg.CancelEdBBtnClick

CancelEdBBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure CancelEdBBtnClick is an event handler activated by clicking once on the "Abort"

button of the dialog extension. The edit field will be removed from the dialog and its content will

be erased.

TFuzzyParametersDlg.SaveEdBBtnClick

SaveEdBBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure SaveEdBBtnClick is an event handler activated by clicking once on the "Save"

button of the dialog extension. The content of the edit field is stored to the open fuzzy description

file. An error message will appear, when the saving procedure fails. Then the edit field will be

removed from the dialog and its content will be erased.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-34 BB50 Windows Software V1.0

TFuzzyParametersDlg.OKBtnClick

OKBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure OKBtnClick is an event handler activated by clicking once on the "Reload" button

of the "Fuzzy Controller Parameters" dialog. The names of all currently selected fuzzy description

files are written to the open "fuzzy-controller" file. The corresponding fuzzy descriptions are

reloaded and the accompanying objects are generated. Errors occurred during writing to the

"fuzzy-controller" file or errors generated with the new creation of the fuzzy objects are displayed

in corresponding error messages.

TFuzzyParametersDlg.HelpBtnClick

HelpBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure HelpBtnClick is an event handler activated by clicking once on the "Help" button

in the "Fuzzy Controller Parameters" dialog. The corresponding section of the help file BB50.HLP

will be displayed in a window on the screen.

TMeasureDlg.OKBtnClick

OKBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure OKBtnClick is an event handler for clicking once on the "Ok" button from the

dialog "Setup Measuring Function" to adjust the conditions for the measurement acquisition. The

contents of three input fields are converted to numbers for the total measuring time (time = 0 to

1000 sec), for the time before reaching the trigger condition (prestore = 0 to measuring time) and

for the trigger level (trigger = -0.4 to 0.4) only when none of the numbers exceeds the valid range.

Two further groups of radio buttons are used to determine the trigger channel tchannel as well as

the trigger condition slope. The trigger condition is either not existing or defined as a slope,

meaning that the measured value of the trigger channel has to exceed the trigger level either in

positive or in negative direction. The measuring is started directly after terminating the dialog.

Measured values are the setpoint for the ball position, the measured values for the ball position

and the beam angle, the differentiations of the measured signals as well as the control signal

including additional friction compensations.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-35

TMeasureDlg.HelpBtnClick

HelpBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure HelpBtnClick is an event handler activated by clicking once on the "Help" button

in the "Setup Measuring Function" dialog. The corresponding section of the help file BB50.HLP

will be displayed in a window on the screen.

TPLDInfoDlg.FormShow

FormShow(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure FormShow is called, when the object of type TPLDInfoDlg is displayed on the

screen. The controller settings of a loaded so-called documentation file are displayed in a "PLD

Information" window. The controller settings include the controller type (state controller, fuzzy

controller, calibration mode, no controller). the time of the measurement acquisition as well as

the sampling rate of the measurement.

TPLDInfoDlg.HelpBtnClick

HelpBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure HelpBtnClick is an event handler activated by clicking once on the "Help" button

in the "PLD Information" dialog. The corresponding section of the help file BB50.HLP will be

displayed in a window on the screen.

TPlotDlg.OKBtnClick

OKBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure OKBtnClick is an event handler for clicking once on the "Ok" button from the

dialog "Select Plot Data" to select the channels of a measuring which are to be represented in a

plot window. The selectable channels are the measured value and setpoint of the ball position,

the measured ball position, the measured beam angle, the control signal, the calculated ball speed

and angle speed, the friction compensation for the beam and ball (the last only with the fuzzy

controller).

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-36 BB50 Windows Software V1.0

TPlotDlg.HelpBtnClick

HelpBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure HelpBtnClick is an event handler activated by clicking once on the "Help" button

in the dialog "Select Plot Data" to select the channels of a measuring which are to be represented

in a plot window. The corresponding section of the help file BB50.HLP will be displayed in a

window on the screen.

TPrintPlotDlg.PrinterBitBtnClick

PrinterBitBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure PrinterBitBtnClick is an event handler for clicking once on the "Printer" button

from the dialog to select previously created plot windows. A modal Windows system dialog

appears that permits the user to select which printer to print to, how many copies to print and

further print options.

TPrintPlotDlg.OKBtnClick

OKBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure OKBtnClick is an event handler for clicking once on the "Ok" button from the

dialog to select previously created plot windows. All of the plot windows selected from the list

box are printed directly to the current output device (by means of the function PrintPlotMeas).

When multiple plot windows are selected an offset of 150 mm (counted from the upper margin

of a DIN A4 page) is added before every second print output and a form feed follows this output.

TPrintPlotDlg.FormShow

FormShow(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure FormShow is called, when the object of type TPrintPlotDlg is displayed on the

screen. At first all titles of the previously created plot windows are inserted in a listbox.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-37

TPrintPlotDlg.HelpBtnClick

HelpBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure HelpBtnClick is an event handler for clicking once on the "Help" button from the

dialog to select previously created plot windows. The accompanying section of the help file

BB50.HLP will be displayed in a window on the screen.

TGeneratorDlg.OKBtnClick

OKBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure OKBtnClick is an event handler for clicking once on the "Ok" button from the

dialog "Ball Position Setpoint Generator" to adjust the setpoint for the ball position. For the

setpoint the signal shape is selectable by radio buttons (constant, rectangle, triangle, ramp, sine)

and an offset, an amplitude as well as a time period are adjustable by input fields. The period is

meaningless in case of a constant signal shape. The real signal is always built by the sum of offset

and amplitude. The valid value ranges are -0.4 to +0.4m for the setpoint’s offset and amplitude

and 0 - 1000 sec for the period. Only when none of the corresponding number exceeds the valid

value range, the numbers are stored in the parameter structure param which is then transferred to

the controller in the BWSERV16.DLL. Finally the dialog is terminated and the generator starts

operating with the next sampling period.

TGeneratorDlg.FormShow

FormShow(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure FormShow is called, when the object of type TGeneratorDlg is displayed on the

screen. The input fields as well as the radio buttons to adjust the generator for the setpoint of the

ball position are preset according to the parameters of the global parameter structure param.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-38 BB50 Windows Software V1.0

TGeneratorDlg.HelpBtnClick

HelpBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure HelpBtnClick is an event handler activated by clicking once on the "Help" button

in the dialog "Ball Position Setpoint Generator". The corresponding section of the help file

BB50.HLP will be displayed in a window on the screen.

TStateParametersDlg.FormCreate

FormCreate(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure FormCreate creates an instance of an object of type TStateParametersDlg. With

this a multiple-page dialog with four pages is generated.

TStateParametersDlg.TabSetClick

TabSetClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure TabSetClick is an event handler for clicking once on one of the tabs of a page in

the "State Controller Parameters" dialog. The selected page will appear inside the dialog.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-39

TStateParametersDlg.FormShow

FormShow(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure FormShow is called, when the object of type TStateParametersDlg is displayed

on the screen. All the matrices of the state controller are read from the parameter structure param.

The edit fields of the multiple-page dialog "State Controller Parameters" are preset accordingly.

The first page of the dialog with the tab stop "State Feedback" is displayed allowing to inspect

and change the components of the feedback vector F. The second page "Prefilter" provides editing

the parameter of the pre-filter. The components of the matrices L, A, B, F of the reduced-order

state observer are changeable with the third page "State Observer". The fourth page with the tab

stop label "Friction Compensation" allows for editing the matrices L, A, B, F of the (friction)

disturbance observer and the parameter Const. of the constant friction compensation.

TStateParametersDlg.OKBtnClick

OKBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure OKBtnClick is an event handler for clicking once on the "Ok" button of one of

the pages of the "State Controller Parameters" dialog. As long as all of the contents of the edit

fields are convertible to binary numbers all the matrices of the state controller are copied to the

parameter structure param which is then transferred to the BWSERV16.DLL. An error message

is presented in the other case.

TStateParametersDlg.HelpBtnClick

HelpBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure HelpBtnClick is an event handler activated by clicking once on the "Help" button

in one of the pages of the dialog "State Controller Parameters". The corresponding section of the

help file BB50.HLP will be displayed in a window on the screen.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-40 BB50 Windows Software V1.0

TStartFuzzDlg.OKBtnClick

OKBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure OKBtnClick is an event handler activated by clicking once on the menu item

"Run/Fuzzy Controller F3". The "Start Fuzzy Controller" dialog will appear displaying two

checkboxes to select the friction compensation for the ball and/or the beam by means of a fuzzy

disturbance observer. The element param.fuzzyobserver is set accordingly.

TStartFuzzDlg.HelpBtnClick

HelpBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure HelpBtnClick is an event handler activated by clicking once on the "Help" button

in the dialog "Start Fuzzy Controller". The corresponding section of the help file BB50.HLP will

be displayed in a window on the screen.

TStartStateDlg.OKBtnClick

OKBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure OKBtnClick is an event handler activated by clicking once on the menu item

"Run/State Controller F2". The "Start State Controller" dialog will appear containing two groups

of radio buttons to select the friction compensation for the ball (be means of an disturbance

observer, a constant compensation or none compensation) and to select the way the

differentiations of the state variables are to be determined (by means of a state observer or by

difference quotients). The element param.stateobserver is set accordingly.

TStartStateDlg.HelpBtnClick

HelpBtnClick(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure HelpBtnClick is an event handler activated by clicking once on the "Help" button

in the dialog "Start State Controller". The corresponding section of the help file BB50.HLP will

be displayed in a window on the screen.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-41

TTimingForm.UpdateData

UpdateData

Description The procedure UpdateData is called periodically with the update rate of the main window (timer

in TMainForm). The current minimum and maximum values of the real sampling period or of

the calculation time during the sampling period are obtained by means of GetMinMaxTime from

the TIMER16.DLL. The recently selected values are displayed in the "BB50 Timing" dialog. The

flag ResFlag to reset the minimum and maximum values is reset.

TTimingForm.Button1Click

Button1Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure Button1Click is an event handler activated by clicking once on the "Reset" button

in the "BB50 Timing" dialog. The flag ResFlag to reset the minimum and maximum values is

set. The content of the dialog is updated (UpdateData).

TTimingForm.FormShow

FormShow(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure FormShow is called, when an object of type TTimingForm is displayed on the

screen. The dialog "BB50 Timing" to display the minimum and maximum values of the real

sampling period or of the calculation time during the sampling period in [ms]. A reset operation

(Button1Click) is carried-out. The default display values are from the real sampling period.

TTimingForm.Button2Click

Button2Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure Button2Click is an event handler activated by clicking once on the "Hide" button

in the "BB50 Timing" dialog. The procedure TMainForm.Timing1Click will reset the visibility

of the "BB50 Timing" dialog.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-42 BB50 Windows Software V1.0

TTimingForm.Button3Click

Button3Click(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure Button3Click is an event handler activated by clicking once on the "Help" button

in the dialog "BB50 Timing". The corresponding section of the help file BB50.HLP will be

displayed in a window on the screen.

TTimingForm.OnClickBtnSampleCalc

OnClickBtnSampleCalc(Sender: TObject)

Parameters: Sender is a reference to the calling object.

Description The procedure OnClickBtnSampleCalc is an event handler activated by clicking once on the

"Sample time"/"Calc time" button in the "BB50 Timing" dialog. The label of the button as well

as the displayed values are toggled accordingly (from sampling period to calculation time and

vice versa).

FloatToStr2

FloatToStr2(f : Single) : string

Parameters: f is the floating point value, which is to be converted.

Description The function FloatToStr2 converts a floating point value (4 bytes for single) to a its string

representation with a maximum of 7 significant digits and 2 digits behind the decimal point.

Return Is the string representation of the floating point value.

FloatToStr3

FloatToStr3(f : Single) : string

Parameters: f is the floating point value, which is to be converted.

Description The function FloatToStr3 converts a floating point value (4 bytes for single) to a its string

representation with a maximum of 7 significant digits and 3 digits behind the decimal point.

Return Is the string representation of the floating point value.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-43

FloatToStr4

FloatToStr4(f : Single) : string

Parameters: f is the floating point value, which is to be converted.

Description The function FloatToStr4 converts a floating point value (4 bytes for single) to a its string

representation with a maximum of 7 significant digits and 4 digits behind the decimal point.

Return Is the string representation of the floating point value.

StrToFloatMinMax

StrToFloatMinMax(s : string; min,max : double) : double

Parameters: s is the string representation of a floating point value.

min is the lower limit for a floating point value.

max is the upper limit for a floating point value.

Description The function StrToFloatMinMax converts a string to the corresponding floating point value.

When this value exceeds the lower or upper limit it is set equal to the exceeded limit and a

corresponding message appears on the screen.

Return Is the possibly limited floating point value.

StrToFloatStrMinMax

StrToFloatStrMinMax(s : string; var val : double; min,max : double) : string

Parameters: s is the string representation of the floating point value.

var val is on return the possibly limited floating point value.

min is the lower limit for a floating point value.

max is the upper limit for a floating point value.

Description The function StrToFloatStrMinMax converts a string to the corresponding floating point value.

When this value exceeds the lower or upper limit it is set equal to the exceeded limit and a

corresponding message appears on the screen. The possibly limited floating point value is again

converted to its string representation with a maximum of 7 significant digits and 3 digits behind

the decimal point.

Return Is the string representation of the possibly limited floating point value.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-44 BB50 Windows Software V1.0

MinMaxi

MinMaxi(val, min, max : Integer) : Integer

Parameters: val is the integer value, which is to be checked.

min is the lower limit for an integer value.

max is the upper limit for an integer value.

Description The function MinMaxi checks if an integer value is inside a limited range. When the integer value

exceeds the lower or upper limit it is set equal to the nearest limit.

Return Is the possibly limited integer value.

DetectNT

DetectNT : Boolean

Description The function DetectNT returns TRUE, when the file NTOSKRNL exists in the Windows system

directory, otherwise it returns FALSE. An error message is presented if the Windows system

directory does not exist. It is assumed that the existence of the file means an operating NT system

and a 16 bit application will not run with a NT system.

Return Returns TRUE, when NTOSKRNL.EXE exists, else FALSE.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-45

1.4 Overview of Classes and DLL Interfaces

The files BWSERV.H, BWSERV.CPP contain:

BOOL CALLBACK DoService(DWORD counter)

BOOL CALLBACK SetParameter(WORD wSize, LPSTR lpData)

BOOL CALLBACK GetParameter(WORD wSize, LPSTR lpData)

BOOL CALLBACK GetData(WORD wSize, LPSTR lpData)

BOOL CALLBACK LockMemory(BOOL bStart, HDRVR hDrv)

BOOL CALLBACK SetDriverHandle(HDRVR hDrv)

BOOL CALLBACK ReadFuzzy(void)

BOOL CALLBACK ReadStatePar(char* name)

BOOL CALLBACK WriteStatePar(char* name)

BOOL CALLBACK IsDemo(void)

int CALLBACK CalibrateSen(int mode)

int CALLBACK RawSensor(int mode)

int CALLBACK MeasureStart(double time, double trigger, double prestore, int tchannel, int slope)

double CALLBACK MeasureLevel(void)

int CALLBACK MeasureStatus(void)

int CALLBACK OpenFuzzy3D(char* filename)

int CALLBACK CloseFuzzy3D(void)

Fuzzy3DInfo* CALLBACK InfoFuzzy3D(void)

double CALLBACK CalcFuzzy3D(double x, double y)

The files BB50STA.H, BB50STA.CPP contain the class BB50STA with:

void BB50STA (void)

void Calc(double w, double Position, double Winkel)

void SetTa(float ta)

void Reset(void)

int Load(char* name)

int Save(char* name)

void SetStateObserver(Observer o)

void SetDistObserver(Observer o)

int geterrors(void)

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-46 BB50 Windows Software V1.0

double* GetV(void)

double* GetFt(void)

double* GetLBD(void)

double* GetABD(void)

double* GetFBD(void)

double* GetBBD(void)

double* GetDCON(void)

double* GetDLBD(void)

double* GetDABD(void)

double* GetDFBD(void)

double* GetDBBD(void)

The files BW502FUZ.H, BW502FUZ.CPP contain the class BW502FUZ :

void BW502FUZ (void)

 void ~BW502FUZ (void)

void Calc(double w, double Position, double Winkel)

double SelectFuzzyFile(char* name)

void Save(char* name)

void SetAngObserver(Observer o)

void SetPosObserver(Observer o)

char* getname(void)

char* getfname(void)

int geterrors(void)

The files ARINGBUF.H, ARINGBUF.CPP contain:

class STOREBUF
void ResetBufIndex(void)

STOREBUF(int, float *)

~STOREBUF()

void StartMeasure(int, float, float, float, int , float)

void WriteValue(void)

void SetOutChan(int)

float ReadValue(void)

int GetBufLen(void)

float GetBufTa(void)

int GetStatus(void)

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-47

The files DRSIGNAL.H, DRSIGNAL.CPP contain:

class AFBUF
AFBUF()

~AFBUF()

int NewFBuf(int)

float ReadFBuf(void)

int WriteFBuf(float)

class TWOBUFFER

TWOBUFFER()

void New2Buffer(int , int, int)

int Write2Buffer(float)

float Read2Buffer(void)

class SIGNAL
SIGNAL()

float InitTime(float)

int MakeSignal(int , float, float, float, int)

float ReadNextValue(void)

void SetRange(float, float)

void WriteBuffer(float)

int Stuetzstellen(float, int)

The file PLOT.CPP contains:

class PLOT

int CALLBACK ReadPlot(char *lpfName)

int CALLBACK WritePlot(char *lpfName)

int CALLBACK Plot(int command, int channel)

int CALLBACK GetPlot(int start, char *lpzName)

int CALLBACK PrintPlot(int idx, HDC dcPrint, int iyOffset)

int CALLBACK GetPldInfo(int &controller, char **s, int &n, int &c, double &d)

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-48 BB50 Windows Software V1.0

1.5 References of the DLL Interfaces

Global Data:

typedef struct{

WORD controller; // controller type (state, fuzzy controller, none)

WORD state_observer; // flag for type of friction compensation in state controller

WORD stateError; // flag for error in state controller

WORD fuzzy_observer; // flag for type of friction compensation in fuzzy controller

WORD fuzzyError; // flag for error in fuzzy controller

WORD dummy1

WORD dummy2

WORD sp1shape; // shape of setpoint signal (constant, rectangle, sine etc.)

double ft[4]; // state feedback vector

double filter; // pre-filter

double lbd[4]; // Luenberger observer matrix L

double abd[4]; // Luenberger observer matrix A

double fbd[4]; // Luenberger observer matrix F

double bbd[2]; // Luenberger observer vector b

double dcon; // parameter of constant friction compensation

double dabd; // disturbance observer matrix A

double dbbd; // disturbance observer matrix B

double dfbd[4]; // disturbance observer matrix F

double dlbd[4]; // disturbance observer matrix L

char name[80]; // name of the "fuzzy-controller" file

double spoffset; // offset of setpoint signal

double spamplitude; // amplitude of setpoint signal

double spperiode; // period of setpoint signal

}ServiceParameter ;

typedef struct{

double setpoint; // setpoint for ball position

double pos; // measured value of ball position

double dpos; // calculated value of ball speed

double ang; // measured value of beam angle

double dang; // calculated value of beam angle speed

double out; // control signal for beam drive

double fuzhelp; // ouput fuzzy object

WORD state;

WORD dummy[3];

}ServiceData;

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-49

struct Fuzzy3DInfo{

long size; // current size of this structure

int idx; // index for the first input variable

int idy; // index for the second input variable

int idz; // index for the output variable

char xname[80]; // name of the first input variable

char yname[80]; // name of the second input variable

char zname[80]; // name of the output variable

double xmin; // minimum value of the first input variable

double xmax; // maximum value of the first input variable

double ymin; // minimum value of the second input variable

double ymax; // maximum value of the second input variable

double zmin; // minimum value of the output variable

double zmax; // maximum value of the output variable

};

ServiceParameter par is a global structure of type ServiceParameter (see also BWSERV.H)

ServiceData dat is a global structure of type ServiceData (see also BWSERV.H)

HGLOBAL mHnd is a handle for the code memory of the BWSERV16.DLL

UINT mData = 0 is a handle for the data memory of the BWSERV16.DLL

HDRVR hDriver = NULL is a handle for the adapter card driver (*.DRV)

DWORD dwCounter = 0L is a counter for calling the function DoService

DICDRV drv is an instance of the class DICDRV (driver interface)

float scopebuf[ScopeBufSize] is the measurement-vector

STOREBUF scope(ScopeBufSize, scopebuf, 1024)

is an object to handle the storage of a maximum of 1024 elements of type scopebuf

SIGNAL SpGen is a setpoint generator object

BB50STA StateCon is a state controller object

BB50FUZ FuzzyCon is a fuzzy controller object

double sWinkel is an beam angle setpoint during calibration

int stopped is a flag for detecting multiple output stage release errors in DoService.

Fuzzy* fuzzy3d is a pointer to an instance of the class Fuzzy (fuzzy object served for output of

3-dimensional characteristic).

Fuzzy3DInfo fuzzy3dinfo is a global structure of type Fuzzy3DInfo (see also F3DINFO.H)

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-50 BB50 Windows Software V1.0

1.5.1 The DLL Interface BWSERV16

DoService

BOOL CALLBACK DoService(DWORD counter)

Parameters counter is a counter for the number of calls.

Description The function DoService is the service routine called with periodic timer events (see also

TIMER16.DLL). Timer events occur with a (nearly) constant sampling period as long as they are

enabled. The following operations are carried-out in sequence:

Reset the flag stopped

Reset the trigger pulse for the servo and the release counter for the first call or after

changing the controller

Trigger the output stage (rectangle signal),

Read sensors for ball position, beam angle,

Correct the ball position,

Get the ball position setpoint from the generator,

Calculate the control signal (state controller/fuzzy controller/none),

Output of control signal,

Store the measurement-vector,

If PC control is disabled increment release counter, else reset

If release counter is equal to 5 set flag stopped.

Attention: This function is to be called only by the TIMER16.DLL!

Return Is equal to FALSE, when flag stopped is set (PC control no longer enabled), else TRUE.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-51

SetParameter

BOOL CALLBACK SetParameter(WORD wSize, LPSTR lpData)

Parameters wSize is the size (in bytes) of the data structure pointed to by lpData.

lpData is a pointer to a data structure of type ServiceParameter.

Description The function SetParameter copies the data structure pointed to by lpData to the global structure

par (type ServiceParameter) only when the size of the source structure is less than or equal to

the size of the destination structure. In this case the matrices of the state controller, the type of

friction compensation as well as the setpoint generator are set accordingly.

Return Is equal to TRUE when the size of the source structure is less than or equal to the size of the

destination structure, else return is equal to FALSE.

GetParameter

BOOL CALLBACK GetParameter(WORD wSize, LPSTR lpData)

Parameters wSize is the size (in bytes) of the data structure pointed to by lpData.

lpData is a pointer to a data structure of type ServiceParameter.

Description The function GetParameter at first copies all the current matrices of the state controller as well

as the name of the "fuzzy-controller" file to the global structure par (type ServiceParameter) then

it copies this structure to the destination structure pointed to by lpData. The last copy procedure

is carried-out only, when the size of the source structure par is equal to the size of the destination

structure.

Return Is equal to TRUE when the size of the source structure is less than or equal to the size of the

destination structure, else return is equal to FALSE.

GetData

BOOL CALLBACK GetData(WORD wSize, LPSTR lpData)

Parameters wSize is the size (in bytes) of the data structure pointed to by lpData.

lpData is a pointer to a data structure of type ServiceData.

Description The function GetData at first copies the content of the measurement-vector scopebuf to the global

structure dat (type ServiceData). Then dat is copied to the data structure pointed to by lpData

only when the size of the source structure is less than or equal to the size of the destination

structure. The controller state is set to 1 if the flag stopped is set.

Return Is equal to TRUE when the size of the source structure is less than or equal to the size of the

destination structure, else return is equal to FALSE.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-52 BB50 Windows Software V1.0

LockMemory

BOOL CALLBACK LockMemory(BOOL bStart, HDRVR hDrv)

Parameters bStart is a flag with the meaning:

=TRUE, code and data memory of the BWSERV16.DLL will be locked,

=FALSE, code and data memory of the BWSERV16.DLL will be unlocked.

hDrv is a handle for the IO-adapter card driver (is not used here).

Description The function LockMemory controls the lock status of the code and data memory of the complete

BWSERV16.DLL. With bStart=TRUE this memory is locked. With bStart=FALSE this memory

will be unlocked again.

Attention: This function is to be called only by the TIMER16.DLL !

Return Is equal to TRUE, when the handle of the code memory of the BWSERV16.DLL is valid, else

return is equal to FALSE.

SetDriverHandle

BOOL CALLBACK SetDriverHandle(HDRVR hDrv)

Parameters hDrv is a handle for the IO-adapter card driver.

Description The function SetDriverHandle sets the internal handle for the IO-adapter card driver equal to

the actual parameter.

Attention: This function may only be called by the TIMER16.DLL!

Return Always equal to 0.

ReadFuzzy

BOOL CALLBACK ReadFuzzy(void)

Description The function ReadFuzzy reads all the fuzzy description files and generates the accompanying

fuzzy objects. The names of the fuzzy description files are read from the "fuzzy-controller" file,

the name of which is taken from the global parameter structure par. The current controller type

in par is set equal to FUZZYCONTROLLER only, when a fuzzy controller was active previously

and the new fuzzy object generation was error-free. In case of a previously active fuzzy controller

but errors occurred during the fuzzy object generation the controller type is set equal to

NOCONTROLLER. In any other case the controller type remains as it has been before this

function was called.

Return Is equal to TRUE when the new fuzzy object generation was successful, else FALSE is returned.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-53

ReadStatePar

BOOL CALLBACK ReadStatePar(char* name)

Parameters name is a pointer to the name of a file from which the matrices of a state controller are to be

read.

Description The function ReadStatePar reads all the matrices of a state controller from the file with the given

name name. The current controller type in par is set equal to STATECONTROLLER only, when

a state controller was active previously and the loading procedure was successful. In case of a

previously active state controller but errors occurred during loading the matrices the controller

type is set equal to NOCONTROLLER. In any other case the controller type remains as it has

been before this function was called.

Return Is equal to TRUE, when reloading the matrices of the state controller was successful, else FALSE

is returned.

WriteStatePar

BOOL CALLBACK WriteStatePar(char* name)

Parameters name is a pointer to the name of a file to which the matrices of a state controller are to be

written.

Description The function WriteStatePar writes all the matrices of the state controller to a file with the given

name name. The current controller type in par is set equal to STATECONTROLLER only, when

a state controller was active previously and the writing procedure was successful. In case of a

previously active state controller but errors occurred during writing the matrices the controller

type is set equal to NOCONTROLLER. In any other case the controller type remains as it has

been before this function was called.

Return Is equal to TRUE, when writing the matrices of the state controller was successful, else FALSE

is returned.

IsDemo

int CALLBACK IsDemo(void)

Description The function IsDemo returns a 1 only when the BWSERV16.DLL is a DEMO version (generated

with the macro __SIMULATION__ , instead of the IO-adapter card a mathematical model is

accessed). Otherwise the function returns 0.

Return Is equal to 1 in case of a DEMO version, else equal to 0.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-54 BB50 Windows Software V1.0

CalibrateSen

int CALLBACK CalibrateSen(int mode)

Parameters mode defines the calibration data:

=0, zero-position of the ball, zero-angle of the beam,

=1, left-most ball position,

=2, right-most ball position.

Description The function CalibrateSen determines the calibration data for the incremental encoder signal to

measure the beam angle as well as the camera signal to measure the ball position depending on

the parameter mode. With mode=0 the current incremental encoder signal is taken as the

zero-angle of the beam and the current camera signal is taken as the zero-position of the ball.

When the zero-position is outside of a range from 300 to 800 and error is returned. The camera

signal for the left-most ball position is taken with mode=1. Hereby the beam is inclined

automatically by a proportional controller and then the ball position is measured after a delay time

of about 6 seconds. A measured ball position above a value of 550 result in an error return. A

similar procedure is carried-out with mode=2 for the right-most ball position in a valid range from

550 to 1250.

Return Error state of the calibration procedure:

=0, no error,

=-1, invalid value for mode,

=-2, system detection failed,

=-3, PC control disabled,

=-4, ball position outside of expected range,

=-5, limit switches for maximum beam angle.

RawSensor

int CALLBACK RawSensor(int mode)

Parameters mode defines the return value:

=0, camera signal,

=1, incremental encoder signal.

Description The function RawSensor returns the sensor data (raw data) of the camera signal (mode=0) or the

incremental encoder signal (mode=1).

Return Camera signal or incremental encoder signal.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-55

MeasureStart

int CALLBACK MeasureStart(double time, double trigger, double prestore, int tchannel, int

slope)

Parameters time is the total measuring time (in sec).

trigger is the trigger level for the trigger channel.

prestore is the time before the trigger condition is reached (in sec).

tchannel is the number of the trigger channel.

slobe is a flag for the direction of the trigger condition.

float taint is the sampling period of the service routine.

Description The function MeasureStart calls the function scope.StartMeasure to start a measuring. In

advance the controller settings are copied to the global structure measctrlstatus.

See also STOREBUF::StartMeasure

The functions

MeasureLevel

double CALLBACK MeasureLevel(void)

MeasureStatus

int CALLBACK MeasureStatus(void)

Description call directly the corresponding functions scope.GetBufferLevel, scope.GetStatus of the class

STOREBUF.

See also STOREBUF::GetBufferLevel, STOREBUF::GetStatus

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-56 BB50 Windows Software V1.0

OpenFuzzy3D

int CALLBACK OpenFuzzy3D(char* filename)

Parameters filename is a pointer to the name of a fuzzy description file.

Description The function OpenFuzzy3D opens the fuzzy description file with the name filename and

generates the accompanying fuzzy object (fuzzy3d serving for the output of its 3-dimensional

characteristic). the output file for state and error messages is FUZZY3D.OUT.

Return Error state:

=0, no error,

=-1, invalid pointer to fuzzy object,

=-2, syntax error in the fuzzy description file,

=-3, errors during fuzzy object generation.

CloseFuzzy3D

int CALLBACK CloseFuzzy3D(void)

Description The function CloseFuzzy3D removes an existing fuzzy object (fuzzy3d serving for the output of

its 3-dimensional characteristic) from the memory and resets its pointer to NULL.

Return Always 0.

InfoFuzzy3D

Fuzzy3DInfo* CALLBACK InfoFuzzy3D(void)

Description The function InfoFuzzy3D returns the structure of type Fuzzy3DInfo belonging to an existing

fuzzy object (fuzzy3d serving for the output of its 3-dimensional characteristic).

Return Structure of type Fuzzy3DInfo of an existing fuzzy object.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-57

CalcFuzzy3D

double CALLBACK CalcFuzzy3D(double x, double y)

Parameters x is the value of the first input variable of a fuzzy object.

y is the value of the second input variable of a fuzzy object.

Description The function CalcFuzzy3D calculates the output variable (index fuzzy3dinfo.idz) of a fuzzy object

(fuzzy3d) with the two input variables x and y (indexes fuzzy3dinfo.idx, fuzzy3dinfo.idy). The

return value is the output variable, when the fuzzy object exists and the indexes are within a valid

range.

Return Output variable of an existing fuzzy object with two given values for its input variables or 0.0.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-58 BB50 Windows Software V1.0

1.5.2 The Class BW502STA in the BWSERV16.DLL

The class BW502STA provides functions to calculate the state controller and to determine missing state variables

as well as disturbance signals.

Public Data:

enum Observer { NONE=0, CONSTANT, ACTIVE };

Private Data:

double t sampling period

double v pre-filter

double ft[4] state feedback vector

double x[4] state vector

double z[3] current observer state vector

double zold[3] previous observer state vector

double lbd[4] L-matrix of the state observer

double abd[4] A-matrix of the state observer

double fbd[4] F-matrix of the state observer

double bbd[4] B-vector of the state observer

double dcon parameter of the constant friction compensation

double dabd A-matrix of the disturbance observer

double dbbd B-matrix of the disturbance observer

double dfbd[4] F-matrix of the disturbance observer

double dlbd[4] L-matrix of the disturbance observer

double Position_alt measured ball position from the previous sampling period

double Winkel_alt measured beam angle from the previous sampling period

int start flag: reset of the observer

Observer state mode of the state observer

Observer dist mode of the disturbance observer

char filename[MAXPATH] current name of the parameter file

int errors error counter for file loading

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-59

BB50STA::BB50STA()

 void BB50STA (void)

Description The constructor of the class BB50STA initializes values for the internal error, the sampling period,

all the matrices of the state controller as well as for the constant friction compensation. The name

of the current parameter file is set to DEFAULT.STA. When this file could be read successfully

all the matrices of the state controller are set accordingly. The flag for resetting the observer is

set.

BB50STA::Calc

void Calc(double w, double Position, double Winkel)

Parameters w is the setpoint of the ball position.

Position is the measured value of the ball position.

w is the measured value of the beam angle.

Description The function Calc is the main function of this class. It carries-out the calculation of the state

controller. When the flag start is set, the initial states of the observer and the controller are reset.

The missing state variables ball speed and beam angle speed are determined either by means of

an observer or are calculated using difference quotients or are reset to 0.0 depending on the mode

state. After limiting all the state variables the control signal is calculated by means of the state

feedback vector. To compensate the effect of the ball friction an additional control signal is either

calculated by means of a disturbance observer or taken as a positive or negative constant signal

with respect to the current ball position or reset to 0.0 depending on the mode dist of the

disturbance observer. After calculating the two observers for the missing state variables and the

friction compensation the state variables as well as the control signals are stored in the

measurement-vector scopebuf. The function returns the difference of the control signal and the

additional control signal (for friction compensation).

Return The control signal with friction compensation of the state controller.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-60 BB50 Windows Software V1.0

BB50STA::SetTa

void SetTa(float ta)

Parameters ta is the value of the real sampling period of the controller.

Description The function SetTa sets the internal sampling period of the state controller equal to the given

value ta. This value has to be the same as the sampling period for the controller set by the

TIMER16.DLL. Otherwise the calculation of the difference quotients fails.

BB50STA::Reset

void Reset(void)

Description The function Reset sets the flag start to reset the initial values of the disturbance observer and of

the state controller.

BB50STA::Load

int Load(char* name)

Parameters name is a pointer to the name of a file from which the matrices of the state controller are to be

read.

Description The function Load copies the given name to filename and tries to open the corresponding file.

When the file cannot be opened, an error message is presented, the internal error errors is set to

1 and the function returns ERROR (-1) immediately. Otherwise all the parameters are read from

the file and stored in the corresponding matrices of the state controller. The file must match a

predefined format and the sequence of the parameters separated by comment lines with a closing

"]" character. The internal error errors is reset to 0.

Return A value of 0 with a successful read operation from the file, else -1.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-61

BB50STA::Save

int Save(char* name)

Parameters name is a pointer to the name of a file to which the matrices of the state controller are to be

written.

Description The function Save copies the given name to filename and tries to open the corresponding file.

When the file cannot be opened, an error message is presented, the internal error errors is set to

1 and the function returns ERROR (-1) immediately. Otherwise all the matrices of the state

controller are written to the file with additional comment lines. The internal error errors is reset

to 0.

Return A value of 0 with a successful write operation to the file, else -1.

BB50STA::SetStateObserver

void SetStateObserver(Observer o)

Parameters o is the new mode of the state observer.

Description The function SetStateObserver sets the mode of the state controller to determine the missing

state variables ball speed as well as beam angle speed. These variables are either determined by

means of a reduced-order state observer (ACTIVE) or calculated by difference quotients

(CONSTANT) or reset to 0.0 (NONE).

BB50STA::SetDistObserver

void SetDistObserver(Observer o)

Parameters o is the new mode of the disturbance observer.

Description The function SetDistObserver sets the mode of the disturbance observer to determine the

additional control signal to compensate the ball friction. This additional control signal is either

determined by means of a disturbance observer (ACTIVE) or set to a positive or negative constant

with respect to the current ball position (CONSTANT) or reset to 0.0 (NONE).

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-62 BB50 Windows Software V1.0

BB50STA::geterrors

int geterrors(void)

Description The function geterrors returns the value of the internal error errors. This variable is set during

file accesses (see also Load, Save).

Return The value of the internal error errors.

BB50STA::GetV

double* GetV(void)

Description The function GetV returns a pointer to the parameter of the pre-filter.

Return A pointer to the parameter of the pre-filter.

BB50STA::GetFt

double* GetFt(void)

Description The function GetFt returns a pointer to the state feedback vector ft.

Return A pointer to the state feedback vector ft.

BB50STA::GetLBD

double* GetLBD(void)

Description The function GetLBD returns a pointer to the L-matrix of the reduced-order state observer.

Return A pointer to the L-matrix of the reduced-order state observer.

BB50STA::GetABD

double* GetABD(void)

Description The function GetABD returns a pointer to the A-matrix of the reduced-order state observer.

Return A pointer to the A-matrix of the reduced-order state observer.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-63

BB50STA::GetFBD

double* GetFBD(void)

Description The function GetFBD returns a pointer to the F-matrix of the reduced-order state observer.

Return A pointer to the F-matrix of the reduced-order state observer.

BB50STA::GetBBD

double* GetBBD(void)

Description The function GetBBD returns a pointer to the B-matrix of the reduced-order state observer.

Return A pointer to the B-matrix of the reduced-order state observer.

BB50STA::GetDCON

double* GetDCON(void)

Description The function GetDCON returns a pointer to the parameter of the constant friction compensation.

Return A pointer to the value of the constant friction compensation.

BB50STA::GetDLBD

double* GetDLBD(void)

Description The function GetDLBD returns a pointer to the L-matrix of the disturbance observer

(compensation of ball friction).

Return A pointer to the L-matrix of the disturbance observer.

BB50STA::GetDABD

double* GetDABD(void)

Description The function GetDABD returns a pointer to the A-matrix of the disturbance observer

(compensation of ball friction).

Return A pointer to the A-matrix of the disturbance observer.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-64 BB50 Windows Software V1.0

BB50STA::GetDFBD

double* GetDFBD(void)

Description The function GetDFBD returns a pointer to the F-matrix of the disturbance observer

(compensation of ball friction).

Return A pointer to the F-matrix of the disturbance observer.

BB50STA::GetDBBD

double* GetDBBD(void)

Description The function GetDBBD returns a pointer to the B-matrix of the disturbance observer

(compensation of ball friction).

Return A pointer to the B-matrix of the disturbance observer.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-65

1.5.3 The Class BW502FUZ in the BWSERV16.DLL

The class BW502FUZ provides functions to apply a fuzzy controller. It serves as an interface to the fuzzy

algorithms contained in Fuzzy.lib.

Public Data:

enum Observer {NONE=0, CONSTANT, ACTIVE};

Private Data:

int errors error counter for file access

Fuzzy *PosController fuzzy position controller

Fuzzy *AngController fuzzy beam angle controller

Fuzzy *PosObserver fuzzy position observer

Fuzzy *AngObserver fuzzy beam angle observer

Observer posobserver mode of the fuzzy position observer

Observer angobserver mode of the fuzzy beam angle observer

double x[4] state vector

double lastp control signal from previous sampling period

char cname[MAXPATH] current "fuzzy-controller" file name

char fname[4][MAXPATH] names of the fuzzy description files

BW502FUZ::BW502FUZ()

 void BW502FUZ (void)

Description The constructor of the class BW502FUZ assigns NULL to all the pointers to fuzzy objects, reads

the "fuzzy-controller" file DEFAULT.FBW (see also SelectFuzzyFile) and generates the

accompanying fuzzy objects. The modes of the fuzzy position observer as well as of the fuzzy

beam angle observer are set to ACTIVE, meaning that the additional control signals to compensate

the effects of friction are determined by fuzzy observers. The control signal from the previous

sampling period is reset.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-66 BB50 Windows Software V1.0

BW502FUZ::~BW502FUZ()

 void ~BW502FUZ (void)

Description The destructor of the class BW502FUZ removes all the fuzzy objects from the memory.

BW502FUZ::Calc

void Calc(double w, double Position, double Winkel)

Parameters w is the setpoint of the ball position.

Position is the measured value of the ball position.

w is the measured value of the beam angle position.

Description The function Calc is the main function of this class to calculate the fuzzy controller. When the

internal error errors is unequal to zero, the function returns 0.0 immediately. The missing state

variables ball speed and beam angle speed are calculated by difference quotients. After limiting

all the state variables and storing the setpoint as well as the measured values to the

measurement-vector scopebuf the control signal is calculated by means of a cascaded fuzzy

controller/observer.

When the fuzzy position observer is activated an additional signal to compensate the ball friction

is calculated by the fuzzy object with the two input signals beam angle and ball speed. Otherwise

the additional signal is reset to 0.0. This additional signal and the output signal of the fuzzy object

with the input signals position control error and ball speed produce the setpoint signal for the

beam angle controller in the lower cascade.

The fuzzy object of the beam angle controller is driven by the two input signals, angle control

error and the angular velocity of the beam. Its output signal is the control signal for the plant.

When the fuzzy beam angle observer is activated a second additional signal to compensate the

beam friction is calculated by the fuzzy object with the two input signals beam angular velocity

and control signal from the previous sampling period. Otherwise the second additional signal is

reset to 0.0. The two additional signals as well as the original control signal are stored to the

measurement-vector scopebuf. The function returns the sum of the original control signal and the

second additional signal.

Return The control signal with friction compensation of the fuzzy controller.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-67

BW502FUZ::SelectFuzzyFile

double SelectFuzzyFile(char* name)

Parameters name is a pointer to the name of a "fuzzy-controller" file from which the names of the fuzzy

description files and then the contents of these files are to be read.

Description The function SelectFuzzyFile at first searches for the extension "FBW" in the given file name.

When this extension is missing, the internal error errors is set to 1 and the function returns -1.0

immediately. Otherwise the given name is stored to cname and after replacing its extension by

"OUT" is taken as the output log file. If the file with the given name cannot be opened an error

message is presented, the internal error errors is set to 1 and the function returns -1.0 immediately.

Now in a sequence possibly existing fuzzy objects are deleted and fuzzy description files are read

with a syntax check. In case of no errors the accompanying fuzzy objects are generated. If the

generation was successful the mean calculation time for all of the fuzzy objects is determined and

returned.

Return The mean calculation time of all fuzzy objects or -1.0 in case of an error.

BW502FUZ::Save

void Save(char* name)

Parameters name is a pointer to the name of a "fuzzy-controller" file to which the names of the fuzzy

description files are to be written.

Description The function Save copies the given name to cname, when the internal error errors is not set. If

the file with the given name can be opened the contents of fnames, that means the names of the

currently used fuzzy description files are written to this file.

BW502FUZ::SetAngObserver

void SetAngObserver(Observer o)

Parameters o is the new mode of the fuzzy beam angle observer.

Description The function SetAngObserver determines the mode of the fuzzy beam angle observer to

calculated the additional signal for the compensation of the beam friction. The additional signal

is determined either by means of the fuzzy beam angle observer (ACTIVE) or is reset to 0.0

(NONE).

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-68 BB50 Windows Software V1.0

BW502FUZ::SetPosObserver

void SetPosObserver(Observer o)

Parameters o is the new mode of the fuzzy position observer.

Description The function SetPosObserver determines the mode of the fuzzy position observer to calculated

the additional signal for the compensation of the ball friction. The additional signal is determined

either by means of the fuzzy position angle observer (ACTIVE) or is reset to 0.0 (NONE).

BW502FUZ::getname

char* getname(void)

Description The function getname returns the name of the current "fuzzy-controller" file, meaning the content

of cname.

Return A pointer to the name of the current "fuzzy-controller" file from cname.

BW502FUZ::getfname

char* getfname(int i)

Parameters i is the index of the fuzzy description file.

Description The function getfname returns the name of the current fuzzy description file with the index i,

meaning the content of fname[i].

Return A pointer to the name of the current fuzzy description file with the index i from fname[i].

BW502FUZ::geterrors

int geterrors(void)

Description The function geterrors returns the value of the internal error errors. This variable is set during

file accesses (see also Load, Save).

Return The value of the internal error errors.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-69

1.5.4 The Class STOREBUF in the BWSERV16.DLL

The instance of the class STOREBUF realizes the function of data buffering. The data buffer created dynamically

looks like a matrix with a maximum of assignable rows, where each row contains an adjustable number of

components (i.e. float values from measurements). The storage in the data buffer is performed row by row, where

each row is represented by a data vector, which was filled by another routine from an upper level. In this case it is

the interrupt service routine which fills the data vector, i.e. with the setpoint value, measurements and control

signals, in every sampling period. An element function (StartMeasure) of STOREBUF starts and controls the

storage (WriteValue) of this data vector in the data buffer. With respect to the measuring time at first those

sampling periods are determined in which storage is to be performed (number of store operations * sampling

periods = measuring time). Where the number of store operations is calculated at first such that it is always less than

the maximum number of measurement vectors (= number of rows of the memory matrix). At the end of the

measuring time the store operation is terminated in case no additional trigger conditions are set. In case of an

activated trigger condition, a signal crosses a given value with a selected direction, the store operation is continued

until the end of the measuring time after the trigger condition was met. In case the signal does not meet the trigger

condition, the store operation is performed endless in a ring until the user interactively terminates this operation. In

addition a time before the trigger condition (prestore time) is adjustable in which storage in the data buffer is

performed. The time after the trigger condition is met is then the measuring time reduced by the prestore time. The

mentioned data vector will be named measurement-vector in the following.

Private Data:

float taplt is the sampling period of the interrupt service routine.

int trigger_channel is the channel (index) of the measurement-vector used for triggering.

int startmessung flag for starting new measuring.

int gomessung flag for measuring is started.

int storedelay is the number of sampling periods in between the storage of values.

int storedelayi is the counter for storedelay.

int MaxVectors is the maximum number of storable measurement-vectors.

int anzahl is the number of stored measurement-vectors.

int anzahli is the counter for anzahl.

int stopmeasureindex is the index for normal end of measuring.

int triggerindex is the trigger index..

int prestoreoffset is the number of stored measurement-vectors previous to the trigger.

int nchannel is the number of float values in the measurement-vector.

int outchannel is the channel (index) of the component of the measurement-vector, which is to be read (for

output).

int bufindex is an internal index for the next storage location in the data buffer.

int trigged flag for trigger condition is met.

int stored_values number of measurement-vector storages since the start of the measuring.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-70 BB50 Windows Software V1.0

float trigger_value trigger float value.

float *fptr is a pointer to the start address of the dynamic data buffer.

float *sourceptr is a pointer to the measurement-vector.

float *inptr is a pointer to the actual data buffer location.

int aktiv flag for status of the dynamic data buffer.

int status flag for storage control.

STOREBUF::ResetBufIndex

void ResetBufIndex(void)

Description The private element function ResetBufIndex sets bufindex to 0 and inptr equal to fptr meaning

that the start conditions for the data buffer are set.

STOREBUF::STOREBUF

STOREBUF(int nchannel, float *indata, int maxvectors)

Parameters int nchannel is the number of float values of the external measurement-vector.

float *indata is the pointer to the start address of the measurement-vector.

int maxvectors is the maximum number of measurement-vectors.

Description The constructor of this class initializes flags (gomessung, startmessung, aktiv = FALSE) to control

the storage as well as a pointer to the measurement vector (sourceptr = indata. The maximum

number of the measurement-vectors is set (MaxVectors = maxvectors) where the minimum value

is limited to 1.

STOREBUF::~STOREBUF()

void ~STOREBUF(void)

Description The destructor of this class frees the dynamically allocated memory fptr in case it was created.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-71

STOREBUF::StartMeasure

void StartMeasure(float meastime, float triggervalue, float prestoretime, int triggerdir,

float taint)

Parameters triggerchannel is the number of the trigger channel.

meastime is the measuring time in seconds.

triggervalue is the trigger level of the trigger channel.

prestoretime is the time of storage previous to the trigger (in sec).

triggerdir is the flag for direction (below/above) of the trigger condition.

taint is the sampling period of the interrupt service routine.

Description The function StartMeasure initializes a new storage operation. To a maximum of maxvectors

measurement-vectors are stored. In case the adjusted measuring time meastime is longer than

maxvectors * taint (sampling period) the number of interrupt executions without data storage is

calculated. The arguments of this function are all the parameters required for the storage.

STOREBUF::WriteValue

void WriteValue(void)

Description The function WriteValue stores nchannel float values from the array indata

(measurement-vector) to the current address of the dynamically allocated array.

STOREBUF::SetOutChan

void SetOutChan(int in)

Parameters int in references the component of the measurement vector which is to be read (output).

Description The inline function SetOutChannel sets the channel number (index in the measurement-vector)

of the signal which is to be returned by the function ReadValue.

STOREBUF::ReadValue

float ReadValue(void)

Description The function ReadValue returns the value of the next storage location belonging to the channel

selected by SetOutChannel.

Return Value (float) read from measurement-vector.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-72 BB50 Windows Software V1.0

STOREBUF::GetBufLen

int GetBufLen(void)

Description The function GetBufLen interrupts a current storage operation and returns the number of stored

measurement-vectors.

Return Number (int) of stored measurement-vectors.

STOREBUF::GetBufTa

float GetBufTa(void)

Description The inline function GetBufTa returns the time between storage, which was calculated with

respect to the measuring time and the sampling period.

Return Time (float) between storage depending on measuring time and sampling period.

STOREBUF::GetStatus

int GetStatus(void)

Description The function GetStatus returns the status of the store operation.

Return Status (int) of store operation

0 not initialized

1 storage before trigger

2 waiting for trigger condition

4 storage operation

5 storage complete

6 storage interrupted

STOREBUF::GetBufferLevel

double GetBufferLevel(void)

Description The function GetBufferLevel returns the percentage of the former measurement time with respect

to the given trigger condition (= filling ratio or level of the data buffer). The return value will stay

at 0% until the valid trigger condition is reached even when prestoretime is unequal to zero. That

means the return value will start with an initial value of prestoretime / meastime in % at the time

of a valid trigger condition.

Return The percentage of the filling ratio (double) of the data buffer.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-73

1.5.5 The Class AFBUF in the BWSERV16.DLL

An instance of the class AFBUF is an object that creates dynamically a data array for an assignable number of float

values. Data can be stored in this array and can be read afterwards when the data array is filled completely. The

array is handled like a ring buffer.

Private data:

float *fptr is the pointer to the start of the dynamically created data array.

float *inptr is the pointer to the current storage location ready to store a value (input).

float *outptr is the pointer to the current storage location ready to read a value (output).

int aktiv flag: dynamic memory is initialized.

int filled flag: data array is filled.

int abuflen is the number of float values in the data array.

int inbufindex is the index of the current input position.

int outbufindex is the index for the current output position.

AFBUF::AFBUF()

void AFBUF(void)

Description The constructor of this class resets the flag aktiv, which indicates a dynamically created data array.

AFBUF::~AFBUF()

void ~AFBUF(void)

Description The destructor of this class frees the initialized data memory in case it was created dynamically.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-74 BB50 Windows Software V1.0

AFBUF::NewFBuf

int NewFBuf(int anzahl)

Parameters anzahl is the size of the data array in float values.

Description The function NewFBuf initializes a data array with anzahl float values. A value of 1 is returned

after a successful initialization, otherwise 0 is returned.

Return Status (int) of data array:

= 0, data array is not initialized,

= 1, data array is initialized.

AFBUF::ReadFBuf

float ReadFBuf(void)

Description The function ReadFBuf returns the float value of the next storage location of the dynamically

created data array in case this array was filled previously.

Return Value (float) from data array.

AFBUF::WriteFBuf

int WriteFBuf(float fvalue)

Parameters float fvalue is the value, which is to be stored.

Description The function WriteFBuf stores the float value to the storage location.

Return Number (int) of stored values (=0 in case no data array initialized).

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-75

1.5.6 The Class TWOBUFFER in the BWSERV16.DLL

The class TWOBUFFER handles two instances of the class AFBUF. One instance (write-instance) can be used to

store data while the other is used to read out data (read-instance). In case the data array of the write-instance is filled

it is handled as a read-instance in the following. This condition guarantees that the interrupt service routine has

always access to valid data.

Private objects:

AFBUF Buf1 is an instance of the class AFBUF

AFBUF Buf2 is an instance of the class AFBUF

Private data:

int readbuffer flag: data array is ready for read operation.

int buffer1 flag: 0 = Buf1 write,

1 = Buf1 read.

int buffer2 flag: 0 = Buf2 write,

1 = Buf2 read.

int newbuffer flag: 0 = not a new output buffer,

1 = Buf1 is a new output buffer,

2 = Buf2 is a new output buffer.

int buf1len length of the data array of the instance Buf1

int buf1leni index of the instance Buf1.

int buf2len length of the data array of the instance Buf2.

int buf2leni index of the instance Buf2.

int inbufindex index for input data array.

int repw1 number of repeated values in Buf1

int repw1i index of repeated values in Buf1

int repw2 number of repeated values in Buf2

int repw2i index of repeated values in Buf2

int repb1 number of data array outputs of the instance Buf1.

int repb1i index of the array outputs of the instance Buf1.

int repb2 number of data array outputs of the instance Buf2.

int repb2i index of the array outputs of the instance Buf2.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-76 BB50 Windows Software V1.0

TWOBUFFER::TWOBUFFER()

void TWOBUFFER(void)

Description The constructor of this class initializes flags and counters as follows:

readbuffer = FALSE, buffer cannot be read,

buf1len = 1, length of the buffer Buf1,

buf2len = 1, length of the buffer Buf2,

buffer1 = 1, buffer Buf1 for read operation,

buffer2 = 0, buffer Buf2 for write operation,

newbuffer = 0, no buffer for read or write operation available.

TWOBUFFER::New2Buffer

void New2Buffer(int anzahl , int repeatwert, int repeatbuf)

Parameters int anzahl is the number of float values of the new array.

int repeatwert defines how often a value is to be repeated during a read operation by

Read2Buffer.

int repeatbuf defines how often the array is to be sent to the output.

Description The function New2Buffer creates data arrays dynamically with anzahl float values. With buffer1

= 0 Buf1 is created and with buffer2 = 0 Buf2 is created.

TWOBUFFER::Write2Buffer

int Write2Buffer(float wert)

Parameters float wert is the value, which is to be stored.

Description The function Write2Buffer writes the argument value to the data array. In case the end of the

array is reached, the array is used as a source for the function Read2Buffer.

Return Total number (int) of stored (written) values.

TWOBUFFER::Read2Buffer

float Read2Buffer(void)

Description The function Read2Buffer returns the values of the read-array handling like a ring. In case the

argument repeatbuf of the function New2Buffer was equal to x, the array is read x times. After

x read operations zero is returned. In case repeatbuf is equal to 0, the read operation is cyclic.

Return Value (float), which is read from the array.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-77

1.5.7 The Class Signal in the BWSERV16.DLL

An instance of the class SIGNAL is an object to create a data array, which represents a given signal shape in case it

is read out with constant time intervals. To do this an instance of the class TWOBUFFER is used. Adjustable

signal shapes are rectangle, triangle, sawtooth and sine. In addition the amplitude, an offset and the time period is

adjustable.

Private Data:

float abtastzeit sampling period to read out values.

float stuetzst number of base points of a signal period.

float signaloffset offset of the signal.

float signalamplitude amplitude of the signal.

float minrange minimum available return value.

float maxrange maximum available return value.

Private objects:

TWOBUFFER sign is an instance of the class TWOBUFFER

SIGNAL::SIGNAL()

void SIGNAL(void)

Description The constructor of this class initializes the variables abtastzeit, minrange and maxrange.

SIGNAL::InitTime

float InitTime(float settime)

Parameters float settime is the sampling period of the read routine (in sec.)

Description The function InitTime sets the sampling time, which is used to read out the values from the

interrupt routine, equal to the given controller sampling period.

Return Adjusted sampling period (float) in seconds.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-78 BB50 Windows Software V1.0

SIGNAL::MakeSignal

int MakeSignal(int form, float offset, float ampl ,float periode , int repeatbuf)

Parameters int form is the signal shape indicator

konstform (constant) 0

rectform (rectangle) 1

triform (triangle) 2

saegeform (sawtooth) 3

sinusform (sine) 4

float offset offset value of the signal.

float ampl amplitude of the signal.

float periode period of the signal (in sec).

int repeatbuf defines how often the signal is to be read out (0 = continuously).

Description The function MakeSignal The function MakeSignal generates a data array with a maximum of

1024 float values, in which the values of the selected signal shape are stored. The signal shape is

adjusted by the argument form. The absolute value of the signal f(t) is given by the sum offset +

amplitude * f(t). In case the number of base points determined by the division periode / sampling

period is greater than 1024 the number of base points is halved and the repeat value repw1 or

repw2 is doubled until the number is less than 1024.

After the generation of a data array it is assigned as a source to the function ReadNextValue (see

class TWOBUFFER).

Return Error status:

=0, no error

=1, illegal signal shape.

SIGNAL::ReadNextValue

float ReadNextValue(void)

Description The function ReadNextValue reads the data from the assigned array. The value is internally

limited to the range minrange to maxrange. It is called by the interrupt service routine. Due to

the locking mechanism in TWOBUFFER, new signal shapes can be created even in case the

active interrupt outputs another one.

Return Value (float) read from the data array.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-79

SIGNAL::SetRange

void SetRange(float min, float max)

Parameters float min is the minimum return value of the function ReadNextValue.

float max is the maximum return value of the function ReadNextValue.

Description The function SetRange adjusts the range of the base points forming the signal, i.e. the minimum

and maximum values returned by the function ReadNextValue.

SIGNAL::WriteBuffer

void WriteBuffer(float value)

Parameters float value is the value which has to be stored.

Description The private element function WriteBuffer writes the argument value to the data array of the

instance TWOBUFFER.

SIGNAL::Stuetzstellen

int Stuetzstellen(float Periodenzeit, int form)

Parameters float Periodenzeit is the time period of the signal.

int form is the indicator for the adjusted signal shape.

Description The private element function Stuetzstellen calculates the number of base points and with this the

length of the data arrays of the instance TWOBUFFER depending on the time period and the

signal shape. The number of the base points is determined by the division Periodenzeit / sampling

period. In case of a constant signal shape the minimum number of base points is 1.

Return Calculated number (int) of base points.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-80 BB50 Windows Software V1.0

1.5.8 The DLL Interface PLOT

Included in the BWSERV16.DLL, the functions of the file PLOT.CPP provide the interfaces for graphic output of

measured data and for displaying information about the contents of documentation files (*.PLD).

Global Data:

HWND handlelist[100] is an array to store the handles of plot windows.

PROJECT project is a structure with data for the project identification.

CTRLSTATUS measctrlstatus is a structure containing the controller state, controller parameters as well as

the measuring time at the time a measuring is started.

CTRLSTATUS ctrlstatus is a structure containing the controller state, controller parameters as well as the

measuring time at the time a controller is started.

DATASTRUCT datastruct is structure containing the number of measurement-vectors, the number of its

components as well as the sampling period of a measuring.

char FileName[60] is a string containing the name of a documentation file (*.PLD).

double **ppData is a pointer to a buffer containing measurements loaded from a documentation file (*.PLD).

int NumberOfCurvesInChannel is the number of curves of a plot depending on the "plot channels" (= se-

lected groups of components of the measurement vector).

int ChannelToScope is the relation between curves (index) of the measurement buffer scope or the pointer

**ppData and the "plot channels" (= selected groups of components of the measurement vector).

char *ScopeNames contains the curve descriptions (strings) for the linestyle table of the plot.

char *TitleNames contains the drawing titles for different "plot channels".

char *YAxisNames contains the description of the Y-axis for different "plot channels".

char *XAxisName contains the description of the X-axis for different "plot channels".

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-81

ReadPlot

int CALLBACK ReadPlot(char *lpfName)

Parameters *lpfName is a pointer to the name of a documentation file, from which measurements are to be

read.

Description The function ReadPlot reads the structures project, ctrlstatus and datastruct as well as the

measurements from the documentation file with the given name lpfName and stores the

measurements to a new global data array pointed to by **ppData. Up to 59 characters of the file

name lpfName are copied to the global file name FileName.

Return The state of the file access:

=0, measurements read successfully,

=-1, file with the given name could not be opened,

=-2, the PROJECT structure from the file contains a wrong project number.

WritePlot

int CALLBACK WritePlot(char *lpfName)

Parameters *lpfName is a pointer to the name of a documentation file, to which measurements are to be

written.

Description The function WritePlot writes the global structures project, measctrlstatus, the local structure

DATASTRUCT mydatastruct as well as the content of the global measurement buffer scope to

a documentation file with the given name lpfName. The local structure mydatastruct contains the

number of measurement-vectors, the number of its components as well as the sampling period of

a measuring.

Return The state of the file access:

=0, measurements written successfully,

=-1, file with the given name could not be created.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-82 BB50 Windows Software V1.0

Plot

int CALLBACK Plot(int command, int channel)

Parameters command defines the data source:

=1, data from the global measurement buffer scope,

=2, data from the global array **ppData

channel defines the curves related to "plot channels":

=0, Measured position with setpoint [m] (2 curves),

=1, Measured position [m] (1 curve),

=2, Measured angle [rad] (1 curve),

=3, Controller output [N] (1 curve),

=4, Measured ball speed [m/s] (1 curve),

=5, Measured angle speed [rad/s] (1 curve),

=6, Beam friction comp. [N] (1 curve),

=7, Ball friction comp. (Fuz.)[N] (1 curve)

Description The function Plot represents the curves specified by channel with accompanying descriptions in

a graphic inside a plot window. The data sources are the global measurement buffer scope or the

global array **ppData depending on the parameter command.

Return The state of the graphic output:

=0, successful graphic output of measured curves,

=-1, invalid values for command,

=-2, invalid values for channel,

=-3, length of the global array **ppData is 0,

=-4, length of the global measurement buffer scope is 0.

See also CreateSimplePlotWindow, SetCurveMode, AddAxisPlotWindow, AddXData,
AddPlotTitle, ShowPlotWindow.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-83

GetPlot

int CALLBACK GetPlot(int start, char *lpzName)

Parameters start is a flag indicating the first plot window.

*lpzName is a pointer to the title of the plot window, the Windows handle of which was found.

Description The function GetPlot determines the Windows handle of an existing plot window referenced by

a local index index. The Windows handle is copied to the global list handlelist and the index is

incremented. If the Windows handle is unequal to 0 up to 60 characters of the title of the

corresponding plot window are copied to lpzName. With start=TRUE the Windows handle of the

plot window with index=0 is determined.

Return The state of the handle determination:

=0, handle = 0, plot window with current index could not be found,

=1, handle determined for current index, title copied.

See also GetValidPlotHandle.

PrintPlot

int CALLBACK PrintPlot(int idx, HDC dcPrint, int iyOffset)

Parameters idx is the index for the global list of handles referencing existing plot windows.

dcPrint is the device context of the output device.

iyOffset is the beginning of the printout in vertical direction as a distance in [mm] from the

upper margin of a page.

Description The function PrintPlot prints the content of the plot window with the Windows handle from the

global list handlelist[idx] to the device with the device context dcPrint. The printout has a width

of 180 mm and a height of 140 mm. It is located at the left margin with a distance of iyOffset mm

from the upper margin of a (i.e. DIN A4) page.

Return Is always equal to 0.

See also PrintPlotWindow.

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-84 BB50 Windows Software V1.0

GetPldInfo

int CALLBACK GetPldInfo(int &controller, char **s, int &n, int &c, double &d)

Parameters &controller is a reference to the controller structure (state controller, fuzzy controller, none).

**s is a (double) pointer to the string containing date and time of the measuring.

&n is a reference to the number of samples of each measured signal (curve).

&c is a reference to the number of measured signals.

&d is a reference to the sampling period of the measuring.

Description The function GetPldInfo reads selected elements of the structures ctrlstatus as well as datastruct

and stores these elements to the mentioned parameter references. It is assumed that the structures

were filled previously with data from a loaded documentation file (*.PLD).

Return Is the result:

=0, the structure elements have been copied,

=-1, the global data array **ppData does not exist, length = 0.

See also ReadPlot.

Laboratory Experiment Ball and Beam BB50 Source Files of the BB50W Controller Program

BB50 Windows Software V1.0 1-85

Source Files of the BB50W Controller Program Laboratory Experiment Ball and Beam BB50

1-86 BB50 Windows Software V1.0

2 Driver Functions for BB50

2.1 The Class DICDRV

The class DICDRV provides the interface between the BB50 controller program and the driver functions of the PC

plug-in card. The class WDAC98 containing the driver functions is the basic class of DICDRV. In addition this

class contains the mathematical model of the ball and beam system when it is compiled with ’#define

__SIMULATION__’ (see file BWDEFINE.H). With this all program functions except for the calibration can be

carried out for a simulated ball and beam system. The PC plug-in card is no longer required in this case. This

program version will be called ’DEMO-Version’ in the following.

Basic Class:

WDAC98 driver functions of the PC adapter card (file WDAC98.CPP)

The files DICDRV.H, DICDRV.CPP contain the class DICDRV with the functions:

 DICDRV(void)

~DICDRV(){}

double ReadWinkel(void)

double ReadPosition(void)

void SetKraft(double n)

int ReadCamera(void)

double CorrectPos(double p, double w)

void getxcenter(void)

void getwcenter(void)

int eichok(void)

int CheckSystem(void)

int CheckFree(void)

int LeftSwitch(void)

int RightSwitch(void)

virtual void StartInterrupt(void)

virtual void TriggerEndstufe(void)

void LinModell(void)

Laboratory Setup Ball and Beam BB50 Driver Functions for BB50

BB50 Windows Software V1.0 2-1

Public Data:
double xeich is the zero-position of the ball in [mm].

short xcenter is the camera signal for the zero-position of the ball.

short IncOffset is the incremental encoder signal for the zero-angle of the beam.

short cam is the current camera signal.

short ang is the current incremental encoder signal.

double angle is the beam angle of the mathematical model.

double position is the ball position of the mathematical model.

double kraft is the driving force for the beam of the model.

DICDRV::DICDRV

DICDRV(void)

Description The constructor of the class DICDRV initializes an object of the class WDAC98 and sets initial

values for the calibration data IncOffset, xeich, xcenter. The two analog outputs are reset to 0 and

the camera is enabled. When the file DEFAULT.CAL exists, the calibration data are read from

this file. With the DEMO-version initial values are set for the ball position and the beam angle.

DICDRV::~DICDRV

~DICDRV(void)

Description The destructor of the class DICDRV resets the real control signal to 0 and writes the current

calibration data to the file DEFAULT.CAL.

DICDRV::ReadWinkel

double ReadWinkel(void)

Description The function ReadWinkel reads the incremental encoder signal to measure the beam angle, stores

this value to ang and returns its conversion to an angle in [rad].

With the DEMO-version the beam angle angle calculated by the mathematical model is returned.

Return The beam angle in [rad].

Driver Functions for BB50 Laboratory Setup Ball and Beam BB50

2-2 BB50 Windows Software V1.0

DICDRV::ReadPosition

double ReadPosition(void)

Description The function ReadPosition reads the camera signal (ReadCamera) to measure the ball position,

converts this value to a ball position in [m] with respect to the zero-position in the middle of the

beam and returns the converted value. With xeich greater than 400.0 the return value is always

0.0.

With the DEMO-version the ball position position calculated by the mathematical model is

returned.

Return The ball position in [m].

DICDRV::SetKraft

void SetKraft(double n)

Parameters n is the driving force for the beam in [N].

Description The function SetKraft calculates the control signal in [Volt] required for the given driving force

n in [N] for beam drive. This control signal is limited to +/-3V and transferred to the

D/A-converter.

The D/A-conversion is omitted for the DEMO-version. The given driving force n in [N] is

assigned to the variable kraft and the mathematical model of the ball and beam system is calculated

(LinModell).

DICDRV::ReadCamera

int ReadCamera(void)

Description The function ReadCamera controls the camera such that at first the upper 4 bits and after a delay

time the lower 8 bits of the camera signal are readable. Then the camera is enabled for another

picture measurement. The complete camera signal is stored in cam and returned.

Return The camera signal (12 bits).

Laboratory Setup Ball and Beam BB50 Driver Functions for BB50

BB50 Windows Software V1.0 2-3

DICDRV::CorrectPos

double CorrectPos(double p, double w)

Parameters p is the measured ball position in [m].

w is the measured beam angle in [rad].

Description The function CorrectPos corrects the parallactic error of the position measurement with respect

to a beam angle unequal to zero. A filter procedure is applied on the ball position in addition.

When the current ball position differs too much from the previous measurement (runaway), this

measurement is taken as a valid ball position as long as this case does not happen the 10th time

(continuous error). The corrected and filtered ball position is returned.

Return The corrected and filtered ball position in [m].

DICDRV::getxcenter

void getxcenter(void)

Description The function getxcenter resets the control signal for the beam drive to 0 and takes the current

camera signal (ReadCamera) as a valid value for the zero-position xcenter of the ball.

DICDRV::getwcenter

void getwcenter(void)

Description The function getwcenter takes the current incremental encoder signal (ReadDDM) as a valid

value for the zero-angle IncOffset of the beam.

DICDRV::eichok

int eichok(void)

Description The function eichok checks if the current calibration data for the position measurement are inside

of expected ranges. When xeich is not inside the range 500.0 to 900.0, its value is set to 700.0 and

when xcenter is outside of the range 300 to 800, its value is set to 500. If one of the conditions

failed the return value is 0, else it is 1.

Return A value of 1 for valid values of the calibration data, else 0.

Driver Functions for BB50 Laboratory Setup Ball and Beam BB50

2-4 BB50 Windows Software V1.0

DICDRV::CheckSystem

int CheckSystem(void)

Description The function CheckSystem checks if the two limit switches (StopLeft, StopRight) indicating a

maximum beam angle are not active at the same time (camera is connected) and if the system

state (LEDReady) is equal to 0. When one of the conditions fails (system lead not connected or

defect?) the return value is 0, else it is 1.

Return A value of 1 for a positive system check, else 0.

DICDRV::CheckFree

int CheckFree(void)

Description The function CheckFree returns a value of 1, when the control by the PC (PCREADY) is enabled,

else it returns 0.

Return Enable state of the PC control (0/1).

DICDRV::LeftSwitch

int LeftSwitch(void)

Description The function LeftSwitch returns a value of zero, when the left limit switch for a maximum beam

angle is activated, else it returns 1.

Return A value of 0 for an activated left limit switch, else 1.

DICDRV::RightSwitch

int RightSwitch(void)

Description The function RightSwitch returns a value of zero, when the right limit switch for a maximum

beam angle is activated, else it returns 1.

Return A value of 0 for an activated right limit switch, else 1.

Laboratory Setup Ball and Beam BB50 Driver Functions for BB50

BB50 Windows Software V1.0 2-5

DICDRV::StartInterrupt

virtual void StartInterrupt(void)

Description The function StartInterrupt activates the output stage release by sending a trigger pulse and

starting a rectangle signal. Any interrupt is left unchanged.

DICDRV::TriggerEndstufe

virtual void TriggerEndstufe(void)

Description The function TriggerEndstufe toggles the level of the rectangle signal for the output stage

release.

DICDRV::LinModell

virtual void LinModell(void)

Description The function LinModell calculates the linearized state space model of the ball and beam system

with the DEMO-version.

Driver Functions for BB50 Laboratory Setup Ball and Beam BB50

2-6 BB50 Windows Software V1.0

2.2 The Class WDAC98

The class WDAC98 realizes the interface between the class DICDRV and the driver functions (DIC24.DRV,

DAC98.DRV) of the PC adapter card. Calling the DRV-functions is carried out by "SendMessage"-functions using

commands and parameters as described with the driver software (see also IODRVCMD.H).

The files WDAC98.CPP and WDAC98.H contain the class WDAC98 with the functions:

double ReadAnalogVolt(int channel)

void WriteAnalogVolt(int channel, double val)

int ReadDigital(int channel)

void WriteDigital(int channel, int value)

unsigned int GetCounter(void)

unsigned long GetTimer(void)

unsigned int ReadDDM(int channel)

void ResetDDM(int channel)

void ReadAllDDM(unsigned int &cnt0, unsigned int &cnt1, unsigned int &cnt2)

void ResetAllDDM(void)

WDAC98::ReadAnalogVolt

double ReadAnalogVolt(int channel)

Parameters channel is the number of the analog input channel, which is to be read.

Description The function ReadAnalogVolt reads the analog input channel specified by channel and returns

the corresponding voltage value. The value is in the range from -10.0 to +10.0 with the assumed

unit [Volt].

Return: The input voltage of the analog channel in the range from -10.0 to +10.0.

Laboratory Setup Ball and Beam BB50 Driver Functions for BB50

BB50 Windows Software V1.0 2-7

WDAC98::WriteAnalogVolt

void WriteAnalogVolt(int channel, double val)

Parameters channel is the number of the analog output channel, to which a value is to be written.

val is the value for the analog output.

Description The function WriteAnalogVolt writes the value val in the range from -10.0 to +10.0 (with the

assumed unit [Volt]) as an analog voltage to the specified analog output channel. Values outside

of the mentioned range are limited internally.

WDAC98::ReadDigital

int ReadDigital(int channel)

Parameters channel is the number of the digital input channel, which is to be read.

Description The function ReadDigital reads the state (0 or 1) of the specified digital input channel and returns

this value.

Return: The state (0 or 1) of the specified digital input.

WDAC98::WriteDgital

void WriteDgital(int channel, int val)

Parameters channel is the number of the digital output channel, to which a value is to be written.

value is the new state of the digital output.

Description The function WriteDgital writes the value val (0 or 1) to the specified digital output channel and

with this sets its state.

WDAC98::GetCounter

unsigned int GetCounter(void)

Description The function GetCounter returns the content of 16-bit-counter register.

Return: The content of the 16-bit-counter register.

Driver Functions for BB50 Laboratory Setup Ball and Beam BB50

2-8 BB50 Windows Software V1.0

WDAC98::GetTimer

unsigned long GetTimer(void)

Description The function GetTimer returns the content of the 32-bit-timer register.

Return: The content of the 32-bit-timer register.

WDAC98::ReadDDM

unsigned int ReadDDM(int channel)

Parameters channel is the number of the DDM device, which is to be read.

Description The function ReadDDM returns the content of the counter register of the specified DDM device

(incremental encoder).

Return: The content of the specified DDM counter register.

WDAC98::ResetDDM

unsigned int ResetDDM(int channel)

Parameters channel is the number of the DDM device, which is to be reset.

Description The function ResetDDM resets the content of the counter register of the specified DDM device

(incremental encoder).

WDAC98::ReadAllDDM

void ReadAllDDM(unsigned int &cnt0, unsigned int &cnt1, unsigned int &cnt2)

Parameters &cnt0 is a reference to the content of the counter register of the DDM device No. 0, which is

to be read.

&cnt1 is a reference to the content of the counter register of the DDM device No. 1, which is

to be read.

&cnt2 is a reference to the content of the counter register of the DDM device No. 2, which is

to be read.

Description The function ReadAllDDM should read the contents of the counter registers of the DDM devices

0, 1 and 2 at the same time and return the values by references.

This function is still not realized but reserved for future applications.

Laboratory Setup Ball and Beam BB50 Driver Functions for BB50

BB50 Windows Software V1.0 2-9

WDAC98::ResetAllDDM

void ResetAllDDM(void)

Description The function ResetAllDDM resets the contents of the counter register of all DDM devices

(incremental encoders) at the same time.

Driver Functions for BB50 Laboratory Setup Ball and Beam BB50

2-10 BB50 Windows Software V1.0

3 The Fuzzy Library

3.1 Introduction to the Structure of the Fuzzy Library

The fuzzy library Fuzzy.lib is constructed with a strict hierarchical structure. Since an object oriented programming

language supports this, the library was programmed using the programming language "C++".

As described in "Backgrounds of the Fuzzy Controller", the fuzzy set is the lowest level of this hierarchy. A

separate class with the name FuzzySet was defined for the fuzzy set. Since nearly all run time operations use the

class FuzzySet, the design was carried out with respect to the optimization of the run time and a definition range as

wide as possible. As these aspects compete with each other, a compromise had to be found between run time and

flexibility. The number representation "double" was chosen, because this is supported directly by the arithmetic

coprocessors. But it is recommended to use a 486DX computer, which has a good performance even with this

number representation. Without an arithmetic coprocessor the fuzzy library can only be applied to slow processes or

off-line calculations, e.g. of a lookup table. The number representation "double" provides a nearly unlimited

definition range for the fuzzy sets. The definition range of a fuzzy set should be between 0 and 1 to achieve a good

overall view, but the correct function of the library does not require this range. The class FuzzySet represents a

fuzzy set by a polygonal line. This polygonal line is stored in form of a corresponding number of x/y values. An

object of type FuzzySet could hold theoretically up to 32768 of those values. But this number will never be

reached, since the available memory is limited. The next level in the hierarchy of the fuzzy library is represented

by the linguistic variable. This variable is included in the class FuzzyVar. A linguistic variable combines a group of

fuzzy sets which have the same definition range. The purpose of the class FuzzyVar is to prepare and handle its

data elements of the type FuzzySet. The x/y values of the objects of type FuzzySet of the class FuzzyVar are

expanded automatically so that all of the fuzzy sets contain the same number of x/y values (normalizing of the sets).

The x co-ordinates of the x/y values are identical. With respect to the run time it is therefore meaningful to use as

few x/y values as possible (usually 3-5 are sufficient) and to use the same x co-ordinates in the x/y values of sets

which are grouped to one linguistic variable.

The fuzzy rules are built by object types of the class FuzzyRule. The class FuzzyRule combines the input and

output linguistic variables together with their sets with respect to the syntax of a fuzzy rule. A separate object has to

be generated for every rule. The class FuzzyRule includes functions to interpret the rules.

The class Fuzzy holds the top of the hierarchy of the fuzzy library. Functions of this class are able to read a fuzzy

description file, to detect syntax errors and to a certain extent logical errors, to generate an executable rule base by

means the above mentioned classes and to compute the mean run time for this base. The class Fuzzy is the only one

of the mentioned classes of the library, which the user calls in his program. An object of the type Fuzzy is a

complete rule base, which is configured by a fuzzy description file. It is problem-free to handle multiple objects of

type Fuzzy, which are stored together in the memory. After reading the fuzzy description file it is recommended to

check by means of corresponding functions if errors occurred during the read and interpret operations. In case of no

error a fuzzy control base can then be generated. A built-in function for computing the mean run time of the

controller in one sampling period should be called before using this control base. The controller run time strongly

depends on the rule base, the number of linguistic variables and the used computer system. The control base should

only be called from an interrupt service routine in case the run time is about 50% shorter than the sampling period

(time between two interrupts).

Laboratory Setup Ball and Beam BB50 The Fuzzy Library

BB50 Windows Software V1.0 3-1

3.2 Description of the Classes

3.2.1 General

The library Fuzzy.lib at hand is compiled using the Borland C++ compiler version 4.2. The compiler switches code

optimization for the 386 processor as well as 16 bit, large memory model, were set.

3.2.2 Overview of the Classes

class FuzzySet

FuzzySet(char *name, int p)

FuzzySet(char *name, int p, double *x)

FuzzySet(char *name, int p, double *x, double *y)

FuzzySet(const FuzzySet& org)

~FuzzySet()
char *getname(void)

void cleary(void)

double *getxvector(void)

double *getyvector(void)

int getstuetzen(void)

void insert(double x, double y)

void normalize(int p, double *x)

double coa(void)

double crisp(double x)

void conclude(FuzzySet *a, double weight)

FuzzySet& operator = (const FuzzySet& org)

FuzzySet& operator *= (double factor)

FuzzySet& operator += (const FuzzySet& org)

FuzzySet& operator << (ostream& o, const FuzzySet& s)

void tout(void)

class FuzzyVar
FuzzyVar(char *name, int c, int m)

~FuzzyVar()

char *getname(void)

char *getsetname(int i)

int getsetcount(void)

void add(int index, FuzzySet *set)

void check(void)

void norm(void)

int getmode(void)

double getmaxx(void)

double getminx(void)

double get(int SetNo)

void set(int SetNo, double weight)

The Fuzzy Library Laboratory Setup Ball and Beam BB50

3-2 BB50 Windows Software V1.0

void clear(void)

double out(void)

double getval(void)

void setval(double v)

void tout(void)

int vsort(int c, double *x)

FuzzyVar& operator << (ostream& o, const FuzzyVar& v)

class FuzzyRule
FuzzyRule(char *name, int i, int o)

~FuzzyRule()

char *getname(void)

void addIn(FuzzyVar *inv, int set, int op)

void addOut(FuzzyVar *outv, int set)

int Do(void)

void tout(void)

FuzzyRule& operator << (ostream& o, const FuzzyRule& r)

class Fuzzy
Fuzzy()

Fuzzy(char *, ostream& eout = cout)

~Fuzzy()

int read(char *n = NULL, ostream& eout = cout)

int write(char *n = NULL)

void generate(void)

void calc(double *, double *)

int getinputcount(void)

int getoutputcount(void)

int geterrors(void)

int getrulecatch(int i)

double speed(long count = 1000)

char *getname(void)

void tout(void)

friend ostream& operator<<(ostream&, const Fuzzy&)

friend istream& operator>>(istream&, Fuzzy&)

int parser(istream&, ostream&)

void calcsetup(void)

char *gettoken(istream&, int mode=0)

int defvar(istream&, ostream&)

int defset(VarDes*, istream&, ostream&)

int defrule(istream&, ostream&)

int deflabel(istream&, ostream&)

char *getlabel(char *)

void killstructures(void)

void killfuzzybase(void)

void killlabel(void)

void out(ostream&) const

Laboratory Setup Ball and Beam BB50 The Fuzzy Library

BB50 Windows Software V1.0 3-3

3.2.3 References of the Classes, their Data and Element Functions

3.2.3.1 The Class FuzzySet
The class FuzzySet is a digital representation of a fuzzy set. The class is designed as a data element of the class

FuzzyVar which is a representation of a fuzzy linguistic variable.

Basic Class:

none

Public Data:

none

Public Element Functions

FuzzySet::FuzzySet

FuzzySet(char *name, int p)

Parameters char *name is a pointer to the name of the fuzzy set.

int p is the number of x/y values for which memory is to be

allocated.

Description The function is a constructor for an empty fuzzy set, but with a defined memory allocation for

the given number of x/y values.

FuzzySet::FuzzySet

FuzzySet(char *name, int p, double *x #following lines)

Parameters char *name is a pointer to the name of the fuzzy set.

int p is the number of x/y values for which memory is to be

allocated.

double *x is a vector of p double numbers, which represent

the x values of the p x/y values.

Description The function is a constructor for a fuzzy set with a defined X vector. The elements of the Y vector

are set to 0.

The Fuzzy Library Laboratory Setup Ball and Beam BB50

3-4 BB50 Windows Software V1.0

FuzzySet::FuzzySet

FuzzySet(char *name, int p, double *x, #following linesdouble *y)

Parameters char *name is a pointer to the name of the fuzzy set.

int p is the number of x/y values for which memory is to be

allocated.

double *x is a vector of p double numbers, which represent

the x values of the p x/y values.

double *y is a vector of p double numbers, which represent

the y values of the p x/y values.

Description The function is a constructor for a fuzzy set with defined X and Y vectors.

FuzzySet::FuzzySet

FuzzySet(const FuzzySet& org)

Parameters const FuzzySet& org is a reference to the fuzzy set, which

is to be copied.

Description The function is a copy constructor.

FuzzySet::~FuzzySet

~FuzzySet()

Description The function is the destructor.

FuzzySet::getname

char *getname(void)

Description The function getname returns a pointer to the name of the fuzzy set.

Return The pointer (char *) to the name of the fuzzy set.

Laboratory Setup Ball and Beam BB50 The Fuzzy Library

BB50 Windows Software V1.0 3-5

FuzzySet::cleary

void cleary(void)

Description The function cleary sets all elements of the Y vector to 0.

FuzzySet::getxvector

double *getxvector(void)

Description The function getxvector returns a pointer to the data array of the X vector.

Return The pointer (double *) to the X vector.

FuzzySet::getyvector

double *getyvector(void)

Description The function getxvector returns a pointer to the data array of the Y vector.

Return The pointer (double *) to the Y vector.

FuzzySet::getstuetzen

int getstuetzen(void)

Description The function getstuetzen returns the number of the x/y values.

Return The number (int) of the x/y values in the set.

FuzzySet::insert

void insert(double x, double y)

Parameters double x is the x value to be inserted.

double y is the y value to be inserted.

Description The function insert inserts a x/y value in the fuzzy set in case the new value is not redundant.

The Fuzzy Library Laboratory Setup Ball and Beam BB50

3-6 BB50 Windows Software V1.0

FuzzySet::normalize

void normalize(int p, double *x)

Parameters int p is the new number of x/y values.

double *x is the new x vector with p co-ordinates.

Description The function normalize normalizes the fuzzy set such that it contains p x/y values with the x

co-ordinates from the given x vector. The fuzzy set will not loose information only in case its old

x co-ordinates are a subset of the new x co-ordinates.

FuzzySet::coa

double coa(void)

Description The function coa calculates a modified centre of area of the fuzzy set.

Return The value (double) of the centre of area point.

FuzzySet::crisp

double crisp(double x)

Parameters double x is the x value for which the crisp value is to be

calculated.

Description The function crisp calculates the y crisp value belonging to the given x value.

Return The calculated crisp value (double).

FuzzySet::conclude

void conclude(FuzzySet *a, double weight)

Parameters FuzzySet *a is the fuzzy set overlay.

double weight is the weighting coefficient.

Description The function conclude overlays the set with the given fuzzy set *a evaluated by the weighting

coefficient weight (Maximum/Product method).

Laboratory Setup Ball and Beam BB50 The Fuzzy Library

BB50 Windows Software V1.0 3-7

FuzzySet::tout

void tout(void)

Description The function tout provides online-debugging. Its output is a representation of the set in readable

text on the screen. This function is still available only to guarantee compatibility with older version

of the fuzzy library. Please use instead the operator <<.

Private Data:
char *SetName is a pointer to the name of the fuzzy set.

double *xval is a pointer to the x vector.

double *yval is a pointer to the y vector.

int sizeis the reserved number of x/y values.

int ss is the actual number of the x/y values.

Private Element Functions:

none

Operators:

FuzzySet::=

FuzzySet& operator = (const FuzzySet& org)

Parameters const FuzzySet& org is a reference to the set, which is to be copied.

Description The assignment operator only operates in case the sets are of the same size. The actual set will be

a copy of the set given by its reference.

Return FuzzySet& is a reference to the copied set.

The Fuzzy Library Laboratory Setup Ball and Beam BB50

3-8 BB50 Windows Software V1.0

FuzzySet::*=

FuzzySet& operator *= (double factor)

Parameters double factor is the scaling factor.

Description The scaling operator is used to weight the set according to the Maximum/ Product method. The

format of the weighting coefficient is double.

Return FuzzySet& is a reference to the set.

FuzzySet::+=

FuzzySet& operator += (const FuzzySet& org)

Parameters FuzzySet& org is a reference to the set, which is to be added.

Description The summation operator only operates in case the two sets have the same size. The set given by

its reference is added to the actual set.

Return FuzzySet& is a reference to the sum of the sets.

FuzzySet::<<

FuzzySet& operator<< (ostream& o, const FuzzySet& s)

Parameters ostream& o is a reference to the output stream.

FuzzySet& s is a reference to the fuzzy set, which is to be

written to the output stream.

Description The operator writes the state of the fuzzy set to the given stream using readable text format.

Return A reference to the output stream.

Laboratory Setup Ball and Beam BB50 The Fuzzy Library

BB50 Windows Software V1.0 3-9

3.2.3.2 The class FuzzyVar
The class FuzzyVar is the digital representation of a fuzzy linguistic variable. The class is used as a data element of

the class Fuzzy.

Basic Classes:

none

Public Data:

none

Public Element Functions:

FuzzyVar::FuzzyVar

FuzzyVar(char *name, int c, int m)

Parameters char *name is the name of the linguistic variable.

int c is the number of fuzzy sets, which can be inserted.

int m is the operation mode of the variables.

Description The constructor of a linguistic variable requires 3 parameters, the variable name, the number of

sets and the mode. The mode defines the direction of the variable i.e. input (bit0 = 0) or output

(bit0 = 1).

FuzzyVar::~FuzzyVar

~FuzzyVar()

Description The destructor not only erases the data defined by the constructor but also all the fuzzy sets, which

were assigned to the linguistic variable by the function add. Therefore a fuzzy set can only be

assigned to one fuzzy variable.

The Fuzzy Library Laboratory Setup Ball and Beam BB50

3-10 BB50 Windows Software V1.0

FuzzyVar::getname

char *getname(void)

Description The function returns a pointer to the name of the linguistic variable.

Return The pointer (char *) to the variable name.

FuzzyVar::getsetname

char *getsetname(int i)

Parameters int i is the index of the fuzzy set.

Description The function returns a pointer to the name of a fuzzy set of the variable. The index of the set is

given by the parameter i.

Return The pointer (char *) to the name of the fuzzy set.

FuzzyVar::getsetcount

int getsetcount(void)

Description The function returns the number of the fuzzy sets assigned to this variable.

Return The number (int) of sets assigned to the variable.

FuzzyVar::add

void add(int index, FuzzySet *set)

Parameters int index is the index of the fuzzy set.

FuzzySet *set is the pointer to the fuzzy set, which will be inserted.

Description The function add assigns the fuzzy set, referenced by its pointer (*set), to the linguistic variable.

The position of the set assigned to the variable is defined by the value index. The calling function

has to take care about the index. The fuzzy sets have to be created dynamically since they will be

deleted by the destructor of the linguistic variable. Calling the function add will transfer the

handling of the fuzzy set completely to the class FuzzyVar.

Laboratory Setup Ball and Beam BB50 The Fuzzy Library

BB50 Windows Software V1.0 3-11

FuzzyVar::check

void check(void)

Description The function check checks the logic structure of the linguistic variable. This function is not

implemented at the moment. It is intended for a future expansion of the class.

FuzzyVar::norm

void norm(void)

Description The function norm normalizes the linguistic variable. That means every set of the variable has

the same number of x/y values at the same x co-ordinates. This is required for calculations with

the fuzzy sets.

FuzzyVar::getmode

int getmode(void)

Description The function getmode returns the operation mode of the variable i.e. its direction input (bit0= 0)

or output (bit0 = 1).

Return The operation mode (int) of the variable.

FuzzyVar::getmaxx

double getmaxx(void)

Description The function getmaxx determines the maximum X value of the definition range of the normalized

fuzzy variable.

Return The maximum value (double) of the x vector of the variable.

FuzzyVar::getminx

double getminx(void)

Description The function getminx determines the minimum X value of the definition range of the normalized

fuzzy variable.

Return The minimum value (double) of the x vector of the variable.

The Fuzzy Library Laboratory Setup Ball and Beam BB50

3-12 BB50 Windows Software V1.0

FuzzyVar::get

double get(int SetNo)

Parameters int SetNo is the index of the fuzzy set.

Description The function get returns the crisp value of the set referenced by its index SetNo. The input value

of the set is identical to the input value of the variable (see also function setval).

Return The determined crisp value (double).

FuzzyVar::set

void set(int SetNo, double weight)

Parameters int SetNo is the index of the fuzzy set, which is to be overlaid.

double weight is the weighting factor.

Description The function set overlays the output set, referenced by its index SetNo, of the variable. The overlay

is weighted by the given weighting coefficient. This function is applicable only to linguistic

variables generated as output variables.

FuzzyVar::clear

void clear(void)

Description The function clear erases the output set of the variable. This is required at the beginning of every

sampling period (control period), but not for every rule. This function is only applicable to output

variables (see also the constructor).

FuzzyVar::out

double out(void)

Description The function out returns the centre of area of the output set of the variable. This function is only

applicable to output variables (see also the constructor).

Return The centre of area (double) of the output set of the variable.

Laboratory Setup Ball and Beam BB50 The Fuzzy Library

BB50 Windows Software V1.0 3-13

FuzzyVar::getval

double getval(void)

Description The function getval returns the current input value of the variable.

Return The input value (double) of the variable.

FuzzyVar::setval

void setval(double v)

Description The function tout provides online-debugging. Its output is a representation of the linguistic

variable in readable text on the screen. This function is still available only to guarantee

compatibility with older version of the fuzzy library. Please use instead the operator <<.

Private Data:
char *VarName is the pointer to the name of the linguistic variable.

int SetCount is the number of fuzzy sets assigned to this variable.

FuzzySet **d is the pointer to the array of fuzzy sets.

double *normx is the pointer to the normalized x vector.

double value is the input value of the variable.

int mode is the operation mode of the variable:

Bit 0: =0, input variable

= 1, output variable

Bit 1-15 reserved for future expansions.

The Fuzzy Library Laboratory Setup Ball and Beam BB50

3-14 BB50 Windows Software V1.0

Private Element Functions:

FuzzyVar::vsort

int vsort(int c, double *x)

Parameters int c is the number of elements in the x vector.

double *x is the given x vector.

Description The help function vsort sorts the c elements of the given x vector. The vector is sorted with

ascending order, double elements are deleted. The new number of elements is returned. This

function is used in case of the normalization of the linguistic variable.

Return The new number (int) of elements in the x vector.

Operators:

FuzzyVar::<<

FuzzyVar& operator<< (ostream& o, const FuzzyVar& v)

Parameters ostream& o is a reference to the output stream.

FuzzyVar& v is a reference to the fuzzy variable, which is to be written to the output stream.

Description The operator writes the state of the fuzzy variable to the given stream using readable text format.

Return A reference to the output stream.

Laboratory Setup Ball and Beam BB50 The Fuzzy Library

BB50 Windows Software V1.0 3-15

3.2.3.3 The class FuzzyRule
The class FuzzyRule is the digital representation of a fuzzy rule. The class is used as a data element of the class

Fuzzy.

Basic Classes:

none

Public Data:

none

Public Element Functions:

FuzzyRule::FuzzyRule

FuzzyRule(char *name, int i, int o)

Parameters char *name is the pointer to the name of the rule.

int i is the number of input combinations.

int o is the number of output combinations.

Description The constructor generates a fuzzy rule. Three parameters are required, the name of the rule

(*name), the number of input combinations (i) and the number of output combinations (o).

FuzzyRule::~FuzzyRule

~FuzzyRule()

Description The destructor erases the memory allocated by the constructor.

FuzzyRule::getname

char *getname(void)

Description The function getname returns the pointer to the name of the rule.

Return The pointer (char *) to the name of the rule.

The Fuzzy Library Laboratory Setup Ball and Beam BB50

3-16 BB50 Windows Software V1.0

FuzzyRule::addIn

void addIn(FuzzyVar *inv, int set, int op)

Parameters FuzzyVar *inv is the referenced variable of an input combination.

int set is the set index of an input combination.

int op is the operator of an input combination.

Description The function addIn adds an input combination to the fuzzy rule. Therefore the pointer to an input

fuzzy variable, the set index and the combination operator has to be given.

FuzzyRule::addOut

void addOut(FuzzyVar *outv, int set)

Parameters FuzzyVar *inv is the referenced variable of an output combination.

int set is the set index of an output combination.

int op is the operator of an output combination.

Description The function addOut adds an output combination to the fuzzy rule. Therefore the pointer to an

output fuzzy variable, the set index and the combination operator have to be given.

FuzzyRule::Do

int Do(void)

Description The function Do interprets a fuzzy rule. A value has to be assigned to the input variables

previously. The defuzzification of the output sets of the output variables is not performed since

this is only meaningful in case all the rules are interpreted. The operators of the input use the

MIN/MAX (and/or) method. The interference is carried out using the Maximum/Product method.

Return Status (int) is 0 in case the rule is not applicable.

FuzzyRule::tout

void tout(void)

Description The function tout provides online-debugging. Its output is a representation of the fuzzy rule in

readable text on the screen. This function is still available only to guarantee compatibility with

older version of the fuzzy library. Please use instead the operator <<.

Laboratory Setup Ball and Beam BB50 The Fuzzy Library

BB50 Windows Software V1.0 3-17

Private Data:
char *RuleName is the pointer to the name of the rule.

int incount is the number of input combinations of the rule.

FuzzyVar **invars is the pointer to an array of pointers to input variables.

int *inset is the pointer to an array of index of the sets.

int *operators is the pointer to an array of operators.

int outcount is the number of output combinations of the rule.

FuzzyVar **outvars is the pointer to an array of pointers to output variables.

int *outset is the pointer to an array of index of the sets.

int iidx, oidx are index variables.

Private Element Functions:

none

Operators:

FuzzyRule::<<

FuzzyRule& operator << (ostream& o, const FuzzyRule& r)

Parameters ostream& o is a reference to the output stream.

FuzzyVar& r is a reference to the fuzzy rule, which is to be written to the output stream.

Description The operator writes the state of the fuzzy rule to the given stream using readable text format.

Return A reference to the output stream.

The Fuzzy Library Laboratory Setup Ball and Beam BB50

3-18 BB50 Windows Software V1.0

3.2.3.4 The Class Fuzzy
The class Fuzzy is the digital representation of a fuzzy controller. The class provides methods to handle, to

read/write, to interpret and to execute fuzzy control bases. The class Fuzzy has no basic class but it requires data

elements which are objects of the following classes:

FuzzySet,

FuzzyVar,

FuzzyRule,

Basic Classes:

none

Public Data:

none

Public Element Functions:

Fuzzy::Fuzzy

Fuzzy()

Description The constructor prepares the fuzzy control base. All of the pointers are initialized and a mechanism

to supervise the ’new’ operator is installed. The control base can be used only after a call to the

functions parser and generate.

Laboratory Setup Ball and Beam BB50 The Fuzzy Library

BB50 Windows Software V1.0 3-19

Fuzzy::Fuzzy

Fuzzy(char *name, ostream& eout = cout)

Parameters char *name is the name of the fuzzy description file.

ostream& eout is the reference to an output stream, which is to be used for status/error

messages (default: cout).

Description Alternatively to the a. m. standard constructor the control base can be generated using a data file

name. In this case the function read is executed besides the operations of the standard constructor.

The function read reads the file referenced by its name (*name) and prints out status/error

messages to the given stream (eout). Attention: The constructor does not return any error

information. Therefore it is strongly required to test the error status by using the function geterrors

before the program is continued.

Fuzzy::~Fuzzy

~Fuzzy()

Description The destructor has the task to free the memory, which was allocated by this object. To do this the

operator uses several help functions (see killstructures, killbase, killlabel).

Fuzzy::read

int read(char *name = NULL, ostream& eout = cout #following lines)

Parameters char *name is the name of the fuzzy description file (default: NULL)

ostream& eout is the reference to an output stream, which is to be used for status/error

messages (default: cout).

Description The function read opens the fuzzy description file referenced by its file name (*name) and

interprets its data using the function parser. Status and error messages are sent to the given stream

(eout).

Return int, is the number of errors occurred.

The Fuzzy Library Laboratory Setup Ball and Beam BB50

3-20 BB50 Windows Software V1.0

Fuzzy::write

int write(char *n = NULL)

Parameters char *n is the name of the fuzzy description file to be created (default: NULL)

Description The function write creates a fuzzy description file on the mass storage depending on the structure

of the fuzzy control base stored in the memory of the computer. This file is readable later on by

the function read. Its name is the given file name (*name).

Return The error status (int) (=0, no error).

Fuzzy::generate

void generate(void)

Description The function generate creates the fuzzy control base using the tree of structures generated by the

function parser. Doing this objects of type FuzzySet, FuzzyVar and FuzzyRule are created.

Existing rule bases are deleted previously (be careful in case of online calls).

Fuzzy::calc

void calc(double *in, double *out)

Parameters double *in is the vector with the values of the input variables.

double *out is the vector with the values of the output variables.

Description The function calc executes the controller function. An array of input values (format: double) is

referenced by its pointer (*in). The pointer (*out) points to an array, which is to be used to store

the output values (format: double). A sufficient size of the arrays has to be regarded. The array

sizes of the control base are known from the fuzzy description file. The order of the array items

is according to the order of their definitions in the description file.

Fuzzy::getinputcount

int getinputcount(void)

Description The function getinputcount returns the number of input variables.

Return The number (int) of input variables.

Laboratory Setup Ball and Beam BB50 The Fuzzy Library

BB50 Windows Software V1.0 3-21

Fuzzy::getoutputcount

int getoutputcount(void)

Description The function getoutputcount returns the number of output variables.

Return The number (int) of output variables.

Fuzzy::geterrors

int geterrors(void)

Description The function geterrors returns the number of errors occurred during the last call to the function

parser.

Return The number (int) of errors occurred.

Fuzzy::getrulecatch

int getrulecatch(int i)

Parameters int i is the index of the rule.

Description The function getrulecatch detects whether the rule i was activated during the last controller

execution. The parameter i is the index of the rule inside the rule base. In case of an illegal rule

index the value -1 is returned.

Return Status (int) is equal to 1 in case the rule was activated during the

Fuzzy::speed

double speed(long count = 1000)

Parameters long count is the number of test passes (default: 1000).

Description The function speed provides run time analysis (available only for DOS and Windows). It

determines the definition range of the input variables, generates random input values belonging

to this definition range and calculates the mean run time of the function calc. The number of passes

through the function calc, which is to be used to determine the mean value, is given by the

parameter count. The mean run time is returned in milli seconds. The function requires an

executable rule base. The longest possible run time cannot be determined, since the run time

depends on the number of the active rules and with that on the input values. Attention:

Manipulations of the timer interrupt (i.e. for the sampling period) falsify the result.

Return The mean run time (double) of the rule base in milli seconds.

The Fuzzy Library Laboratory Setup Ball and Beam BB50

3-22 BB50 Windows Software V1.0

Fuzzy::getname

char *getname(void)

Description The function getname returns a pointer to the name of the rule base.

Return The pointer (char *) to the name of the rule base.

Fuzzy::tout

void tout(void)

Description The function tout provides online-debugging. Its output is a representation of the fuzzy rule base

in readable text on the screen. This function is still available only to guarantee compatibility with

older version of the fuzzy library. Please use instead the operator <<.

Private Data:
char *basename is the pointer to the name of the rule base.

int errorcnt is the counter for the errors occurred during run time.

FuzzyVar **vars is the pointer to an array of pointers to fuzzy variables.

int varcount contains the number of fuzzy variables in the a. m. array.

FuzzyRule **rules is the pointer to an array of pointers to fuzzy rules.

int rulecount contains the number of fuzzy rules.

int *rulecatch is the pointer to an integer array (its size is equal to the number rules) containing

information, whether the specified rule was active during the last execution

pass (!=0) or inactive (==0).

Description structures in form of trees and chained lists for loading, saving and interpreting of fuzzy knowledge

bases are described in the following. Each element of the fuzzy rule base is described by its own structure.

struct PointDes{

PointDes *next, is a pointer to the next element.

double x, is the X value of the base point (X/Y-values).

double y, is the Y value of the base point.

 } is a description structure (off-line) for the base points of a fuzzy set.

struct SetDes{

SetDes *next, is a pointer to the next set of the variable.

PointDes *first, is a pointer to the first base point.

int pointcount, is the base point counter.

char *setname is a pointer to the name of the set.

} is a description structure (off-line) for the fuzzy sets of a fuzzy variable.

Laboratory Setup Ball and Beam BB50 The Fuzzy Library

BB50 Windows Software V1.0 3-23

struct VarDes{

VarDes *next, is a pointer to the next variable.

SetDes *first, is a pointer to the first set of the variable.

int setcount, is the set counter.

char *varname, is a pointer to the name of the variable.

int mode is the operation mode of the variable.

} is a description structure (off-line) for a fuzzy variable.

struct PraeDes{

PraeDes *next, is a pointer to the next premise of the rule.

VarDes *var, is a pointer to the variable structure of the premise.

SetDes *set, is a pointer to the set structure of the a. m. variable.

int op is the operator

} is a description structure (off-line) for the premise of a fuzzy rule.

struct ConDes{

ConDes *next, is a pointer to the next conclusion of the rule.

VarDes *var, is a pointer to the variable structure of the conclusion.

SetDes *set, is a pointer to the set structure of the a. m. variable.

} is a description structure (off-line) for the conclusion of a fuzzy rule.

struct RulDes{

RulDes *next, is a pointer to the next rule.

PraeDes *firstPrae, is a pointer to the first premise of the rule.

ConDes *firstCon, is a pointer to the first conclusion of the rule.

char *rulename, is a pointer to the name of the rule.

} is a description structure (off-line) for a fuzzy rule.

struct label{

label *next, is pointer to the next label structure.

char *name, is a pointer to the label name.

char *val, is a pointer to the label definition.

} is a description structure (off-line) for a label definition.

VarDes *Varbase is the base address of the list of variables.

RulDes *Rulebase is the base address of the list of rules.

label *Labelbase is the base address of the list of labels.

int incount is the number of inputs.

int outcount is the number of outputs.

int *invars is a pointer to an index array for the input variables.

int *outvars is a pointer to an index array for the output variables.

The Fuzzy Library Laboratory Setup Ball and Beam BB50

3-24 BB50 Windows Software V1.0

Private Element Functions:

Fuzzy::parser

int parser(istream& in, ostream& out)

Parameters istream& in is the reference to the stream from which the fuzzy description file is read.

ostream& out is the reference to the stream to which error messages are written.

Description An input stream and an output stream are given to the function parser. The function reads

characters from the input stream (in) and interprets it as a fuzzy description file for a fuzzy rule

base. Status and error messages are sent to the output stream (out). To describe the rule base a

tree structure containing chained lists is generated with respect to the description file for a fuzzy

rule base. Syntax errors and to a certain extent logical errors are detected during the interpretation

of the description file. The number of errors is returned by the function but it can be inquired

alternatively by the function geterrors. In case a tree structure for describing the fuzzy rule base

is existing before the function parser is called, this structure is deleted automatically. To interpret

the fuzzy description file the function parser uses the following help functions:

gettoken() to read ’words’ (separated by spaces)

defvar() to read and handle a variable definition

defrule() to read and handle a rule definition

deflabel() to read and handle a label definition

Return The number (int) of errors occurred.

Fuzzy::calcsetup

void calcsetup(void)

Description The function calcsetup prepares a complete rule base for calculation of its values. To do this

index arrays of inputs and outputs are installed. This function is called automatically by the

function generate.

Laboratory Setup Ball and Beam BB50 The Fuzzy Library

BB50 Windows Software V1.0 3-25

Fuzzy::gettoken

char *gettoken(istream& in, int mode=0)

Parameters istream& in is the reference to the stream from which the token is to be read.

int mode is the operation mode, see above (default = 0).

Description The function gettoken reads a character string from the given input stream (in) and returns it. The

character strings are separated by white spaces (i.e. spaces, tabs etc.). Comments starting with

’/*’ and ending with ’*/’ are ignored. Labels belonging to the list of labels are replaced

automatically by their definition. The second parameter of the function is assignable to the legal

values 0 or 1:

 mode = 0, an arbitrary string (without spaces etc.) is read.

mode = 1, a numerical value (incl. dec. point etc.) is read,

in case of an error in the numerical input the first characters of the returned string

is -1.

Return The pointer (char *) to the token read.

Fuzzy::defvar

int defvar(istream& in, ostream& out)

Parameters istream& in is the reference to the stream from which the description of the linguistic variable

is read.

ostream& out is the reference to the stream to which the status and error messages are written.

Description The function defvar reads and handles a fuzzy linguistic variable. It is called as a help function

by the function parser. The input stream (in) for reading and the output stream (out) to which

error and status messages are written is given to the function. The function returns the number of

errors which occurred during the definition of the linguistic variable.

Return The number (int) of errors occurred.

The Fuzzy Library Laboratory Setup Ball and Beam BB50

3-26 BB50 Windows Software V1.0

Fuzzy::defset

int defset(VarDes *v, istream& in , ostream& out)

Parameters VarDes *v is the pointer to the descriptive structure of the linguistic variable from the higher

level.

istream& in is the reference to the stream from which the description of the fuzzy set is read.

ostream& out is the reference to the stream to which status and error messages are written.

Description The function defset reads and handles a fuzzy set. It is called as a help function by the function

defvar which reads and handles a linguistic variable. The arguments given to the function are the

descriptive structure of the linguistic variable from the higher level (*v), the input stream (in)

from which is read and the output stream (out) to which error and status messages are written.

The function returns the number of errors which occurred during the definition of the fuzzy set.

Return The number (int) of errors occurred.

Fuzzy::defrule

int defrule(istream& in, ostream& out)

Parameters istream& in is the reference to the stream from which the description of the rule is read.

ostream& out is the reference to the stream to which status and error messages are written.

Description The function defrule reads and handles a fuzzy rule. It is called as a help function by the function

parser. The arguments of the function are the input stream (in) from which is read and the output

stream (out) to which error and status messages are written. The function returns the number of

errors which occurred during the definition of the rule.

Return The number (int) of errors occurred.

Fuzzy::deflabel

int deflabel(istream& in, ostream& out)

Parameters istream& in is the reference to the stream from which the description of the label is read.

ostream& out is the reference to the stream to which status and error messages are written.

Description The function deflabel reads and handles the definition of a label. It is called as a help function

from the function parser. The arguments of the function are the input stream (in) from which is

read and the output stream (eout) to which error and status messages are written. The function

returns the number of errors which occurred during the definition of the label. Attention: This

function does not operate with gettoken (compare with numerical input)!

Return The number (int) of errors occurred.

Laboratory Setup Ball and Beam BB50 The Fuzzy Library

BB50 Windows Software V1.0 3-27

Fuzzy::getlabel

char *getlabel(char *s)

Parameters char *s is the pointer to the name of the label to be searched.

Description The function getlabel searches the list of label definitions for the string referenced by *s. In case

this string is found in the list, a pointer to its definition in the list is returned. This pointer is NULL

in the other case. This function is called as a help function from the function gettoken.

Return The pointer (char *) to the label found in the list (=NULL not found).

Fuzzy::killstructures

void killstructures(void)

Description The function killstructures erases the tree of structures which was used to generate the rule base.

The rule base itself is left unchanged.

Fuzzy::killfuzzybase

void killfuzzybase(void)

Description The function killfuzzybase erases the rule base. Further calls to the function calc are no longer

permitted.

Fuzzy::killlabel

void killlabel(void)

Description The function killlabel erases a list of definitions which were constructed according to ’#define’

assignments from the description file. The rule base and its description by a tree of structures are

left unchanged.

The Fuzzy Library Laboratory Setup Ball and Beam BB50

3-28 BB50 Windows Software V1.0

Fuzzy::out

void out(ostream& o) const

Parameters ostream& o is the reference to the stream to which the fuzzy

description file is written.

Description The function out writes the fuzzy rule base in readable text (format of fuzzy description file) to

the referenced stream. The basic representation is the tree of structures of the fuzzy rule base

stored in the memory of the computer. The function is called as an elementary function by the

functions write, tout and the operator <<.

Operators:

Fuzzy::<<

friend ostream& operator<<(ostream& o, const Fuzzy& f)

Parameters ostream& o is the reference to the stream to which the fuzzy description file is to be written.

const Fuzzy& f is the object of type Fuzzy, which is to be written.

Description The operator << writes the fuzzy rule base in readable ASCII text to the referenced stream.

Return ostream& is the reference to the stream to which the fuzzy description

Fuzzy::>>

friend istream& operator>>(istream& i, Fuzzy& f)

Parameters istream& i is the reference to the stream from which the fuzzy description file is to be read.

const Fuzzy& f is the object of type Fuzzy, which is to be read.

Description The operator >> reads the ASCII text of the fuzzy rule base from the referenced stream.

Information about syntax or logical errors are to be detected by the function geterrors.

Return ostream & is the reference to the stream from which the fuzzy description

Laboratory Setup Ball and Beam BB50 The Fuzzy Library

BB50 Windows Software V1.0 3-29

3.3 Description of the File Formats

3.3.1 The Format of the Fuzzy Description File (*.FUZ)

The fuzzy description file with the extension FUZ is a file to configure a fuzzy controller. The file format is

developed by the amira GmbH and is used by several products of the amira.

The fuzzy description file is used to configure a fuzzy object, which i.e. may operate as a fuzzy controller.

The fuzzy description file is a simple ASCII file, which can be edited by a text editor. The length of a line is limited

to 255 characters. Single assignments are separated by spaces or tabulators.

It contains four types of elements, which are described in the following sections:

Comments [optional]

The file can include a comment in classical C-style (’/*’ at the beginning and ’*/’ at the end) at every position

except for the definition part of label. At least one space has to separate the comment string from the ’keywords’

’/*’ and ’*/’.

The Definition of a Label [optional]

The definition of a label is limited to one line. It starts with the statement ’#define’. The next statement contains the

label name and the last statement contains the label definition. Thus a label can be defined as follows:

#define name This_is_the_definition_of_the_label_name

The Definition of Fuzzy Sets and Variables

The definition of fuzzy sets is only allowed within the

definition of variables. It is ignored in the other case. The

definition of a variable starts with the statement ’var’. The

next statement can hold two different names, either ’input’

in case an input variable is to be defined or ’output’ in case

an output variable is to be defined. The third statement of a

variable definition is its name. Now the definition of the

fuzzy set follows. It begins with the statement ’set’

followed by the name of the fuzzy set. The name is

followed by the x/y values as base points for a polygonal

line. Similar to the statements the numbers are separated

by spaces or tabulators. The definition of the fuzzy set

ends with the statement ’endset’. The definition of a

variable ends with the statement ’endvar’ after all the

1

0
10 20 30

Fuzzy-Var: "temper ature"

in degree Celsius

cold

medium

warm

M
e

m
b

e
rs

h
ip

Figure 3.1: The fuzzy variable ’temperature’

The Fuzzy Library Laboratory Setup Ball and Beam BB50

3-30 BB50 Windows Software V1.0

fuzzy sets of the fuzzy variable are defined. Such a definition may look like the following:

var input temperature

set cold 10 1 20 0 endset

set medium 10 0 20 1 30 0 endset

set warm 20 0 30 1 endset

endvar

The Definition of Fuzzy Rules

The definition of a fuzzy rule is recognized from its first statement ’if’. The last statement of a fuzzy rule is named

’end’. The definition of a fuzzy rule contains two parts, the premise and the conclusion. Both parts are separated by

the statement ’then’. The premise and the conclusion are built by a series of expressions which are combined by

operators (further details are shown in the chapter of the theoretical backgrounds of a fuzzy controller). Permitted

operators of the premise are ’and’ (Min-Operator) and ’or’ (Max-Operator) whereas the conclusion requires no

operator to separate the expressions. An expression is the linkage of a fuzzy variable with one of its sets using the

statement ’is’.

The formulation of a fuzzy rule requires that all the variables in use are defined previously since the fuzzy

description file is interpreted only once from top to bottom. The syntax check of a fuzzy object tests whether the

variables are defined, whether the used sets really belong to the variable and if the expressions are used correctly

(input variables with the premise and output variables with the conclusion). A simple definition of a fuzzy rule may

look like the following:

if temperature is cold then heating is high end

Table of the valid commands (keywords) and their explanation:

Command Explanation

#define NAME

TEXT

Defines a NAME, which is usable in the following statements and will be replaced by the

definition TEXT automatically by the pre-processor.
/* Begin of comment, ignored by the fuzzy controller kernel.
*/ End of comment.
var Begin of linguistic variable definition. The statements "input" or "output" and the name of

the variable must follow this keyword. Fuzzy sets are definable only in the following. The

definition of the variable is terminated with the statement "endvar".
input Defines the direction input for a variable.
output Defines the direction output for a variable.
endvar End of definition of a variable.
set Begin of fuzzy set definition. A set name and a series of pairs of values must follow this

keyword. The pairs of values are the base points of the set.
endset End of set definition.
Command Explanation

Laboratory Setup Ball and Beam BB50 The Fuzzy Library

BB50 Windows Software V1.0 3-31

if Begin of fuzzy rule definition. One or multiple premises separated by operators, the

statement "then" and one or multiple conclusions must follow this keyword. The rule

definition is terminated by the statement "end". A premise consists of a name of an input

variable, the statement "is" and the name of the set belonging to this input variable. The

conclusion is built in a similar way but the input variable is replaced by the output variable.
is Separates variable and set in a premise or conclusion.
then Separates the condition and the assignment part of a fuzzy rule.
and Is the Minimum-Operator.
or Is the Maximum-Operator.
end End of rule definition.

Remark

The status and error messages which occur during the interpretation of the fuzzy description file are written to the

file ERROR.OUT or appear on the screen.

3.3.2 The Format of the Error Output File ERROR.OUT

During loading and interpreting of a fuzzy description file status and possible error messages are written to the file

ERROR.OUT. This file has the following format:

Fuzzy Parser Version 1.04 (07-DEC-94)

Fuzzy-Set <set_name> is already defined.

Fuzzy-Set <set_name> expects numerical value.

Unknown variable specification <string>.

Variable <var_name> is already defined.

Rule error, fuzzy variable <var_name> not found.

Rule error, fuzzy variable <var_name> is an output variable.

Rule error, fuzzy variable <var_name> is an input variable.

Rule syntax error, missing is.

Rule error, fuzzy set <set_name> is not member of <var_name>.

Rule syntax error, unknown Operator <string>.

<label_name> is already defined.
<n> Errors detected.

The Fuzzy Library Laboratory Setup Ball and Beam BB50

3-32 BB50 Windows Software V1.0

3.4 A Very Simple Example

3.4.1 The Fuzzy Description File of a Temperature Control

The simple temperature control of an electrical heating requires two variables, the temperature and the heating

current. Here the temperature is the input variable and the heating current is the output variable. The description of a

fuzzy controller for this system may look like the following:

/* A simple temperature control */

var input temperature /* Temperature in centigrade degrees (Celsius) */

set cold 10 1 20 0 endset

set medium 10 0 20 1 30 0 endset

set warm 20 0 30 1 endset

endvar

var output heating_current /* Current in Ampere (0A - 4A) */

set small 0 1 2 0 endset

set medium 0 0 2 1 4 0 endset

set high 2 0 4 1 endset

endvar

/* now the rules follow: */

if temperature is cold then heating_current is high end

if temperature is medium then heating_current is medium end

if temperature is warm then heating_current is small end

/* End of File */

As can be seen from the file, the heating operates with a heating current between 0A and 4A. The rules shall control

a temperature of 20°C.

As usual the file name of the fuzzy description file ends with the extension ’fuz’. In this example we choose the file

name ’SIMPLE.FUZ’.

3.4.2 The C++ Sources of a Temperature Control

After the fuzzy description file was created according to 3.4.1, it has to be included in a C++ program. The

following example briefly shows the solution:

/* Example Program: SIMPLE.CPP */

/* The program is to be adapted to your */

/* development environment. */

Laboratory Setup Ball and Beam BB50 The Fuzzy Library

BB50 Windows Software V1.0 3-33

#include "iostream.h"

#include "ferror.h"

#include "fuzzy.h"

double readtemperature(void)

{

/* here is the code to read the temperature sensor */

return temperature;

}

void writeheatingcurrent(double heating_current)

{

/* here is the code to adjust the heating current */

}

void main(void)

{

Fuzzy f; // create the fuzzy object

double in[1]; // only one input variable

double out[1]; // only one output variable

if(f.read("simple.fuz")) // load the description file

error(); // file

f.generate(); // create the rule base

while(1) // endless loop

{

in[0] = readtemperature(); // read input value

f.calc(in, out); // execute controller

writeheatingcurrent(out[0]); //write output value

}

}

/* end of file */

With this the programming of a very simple fuzzy controller is terminated.

The Fuzzy Library Laboratory Setup Ball and Beam BB50

3-34 BB50 Windows Software V1.0

4 Functions of the PLOT16.DLL

List of the functions (all of type far _pascal) of the standard interface:

int Version(void),

HWND CreateSimplePlotWindow(HWND parentHWnd, WORD NumberOfCurves,

WORD NumberOfPoints, double far** data)

void ShowPlotWindow(HWND HWnd, BOOL bflag)

void ClosePlotWindow(HWND HWnd)

void UpdatePlotWindow(HWND HWnd)

HWND GetValidPlotHandle(int index)

void AddPlotTitle(HWND HWnd, int Position, LPSTR title)

WORD AddAxisPlotWindow(HWND HWnd, WORD AxisID, LPSTR title, WORD Position,

WORD ScalingType, double ScalMin, double ScalDelta, double ScalMax)

void AddXData(HWND HWnd, WORD XCount, double far* XData)

void AddTimeData(HWND HWnd, WORD XCount, double StartTime, double SamplingPeriod)

WORD AddYData(HWND HWnd, WORD nYCount, double far* YData)

void SetAxisPosition(HWND HWnd, WORD AxisID, WORD Position)

int SetCurveMode(HWND HWnd, WORD idCurve, LPSTR title, WORD AxisId, WORD LineStyle,

DWORD Colour , WORD MarkType)

int SetPlotMode(HWND HWnd, WORD TitlePosition, DWORD TitleColour, LPSTR Title, WORD

WithLineStyleTable, WORD WithAxisFrame, WORD WithPlotFrame, DWORD FrameColour,

WORD WithDate, long OldDate, LPSTR FontName, int MaxCharSize)

void PrintPlotWindow(HWND HWnd, HDC printerDC, int xBegin, int yBegin, int xWidth, int yHeight,

BOOL scale)

HWND CreateEmptyPlotWindow(HWND parentHWnd)

Laboratory Setup Ball and Beam BB50 Functions of the PLOT16.DLL

BB50 Windows Software V1.0 4-1

Table of the macros in use:

Macro Value Meaning

X_AXIS 1 reference AxisID for the X-axis
Y_AXIS 2 reference AxisID for the Y-axis
Y_AXIS 4 reference AxisID for the Y2-axis
AXE_BOTTOM 1 X-axis bottom to axis frame
AXE_LEFT 1 Y/Y2-axis left to axis frame
AXE_RIGHT 2 Y/Y2-axis right to axis frame
AXE_TOP 2 X-axis top to axis frame
AXE_MIDDLE 4 X/Y-axis in the middle of the axis frame
TITLETEXT_TOP 1 drawing title top position
TITELTEXT_BOTTOM 2 drawing title bottom position
TITELTEXT_APPEND 4 drawing title appended to the window title
LINEAR_SCALING 0 linear scaling of the min/max-values of an axis
LOG_SCALING 1 logarithmic scaling of the min/max-values of an axis
INTERN_SCALING 0 automatic internal scaling of the min/max-values of an axis
EXTERN_SCALING 2 external adjustment of the min/max/delta-scaling values of an axis
NO_MARK 0 without marking a Y-curve
CROSS 1 marking by a laying cross
TRIANG_UP 2 marking by a triangle top oriented
TRIANG_DOWN 3 marking by a triangle bottom oriented
QUAD 4 marking by a square
CIRCLE 5 marking by a circle

Version

int Version(void)

Description: The function Version returns the version number (at this time = 19 for the version 1.2 dated 01.

April 1999) of this DLL.

Return The version number of this DLL.

CreateSimplePlotWindow

HWND far _pascal CreateSimplePlotWindow (HWND parentHWnd,

WORD NumberOfCurves, WORD NumberOfPoints, double far** data)

Parameters parentHWnd is the windows handle of the parent window.

NumberOfCurves is the number of curves in the plot object.

NumberOfPoints is the number of points of each curve in the plot object.

Functions of the PLOT16.DLL Laboratory Setup Ball and Beam BB50

4-2 BB50 Windows Software V1.0

data is a pointer to the value matrix of the curves.

Description The function CreateSimplePlotWindow creates a window containing a standard plot object.

This plot object contains the value matrix data consisting of NumberOfCurves Y-curves (rows

of the value matrix) with NumberOfPoints points (columns of the value matrix) for each curve

with respect to a common X-axis. The X-axis is interpreted as a time axis with NumberOfPoints

steps to be drawn at the top of the axes frame including labels and a standard axis title. All Y-curves

correspond to one common Y-axis to be drawn left to the axes frame including a standard axis

title and labels determined by an automatic internal scaling. A grid net with dashed lines is added

to the axes frame. A linestyle table is located in the upper part of the window containing a short

piece of a straight line for each Y-curve with the accompanying attributes linestyle, colour and

marking type followed by a short describing text ("Curve #xx"). Each curve is displayed with

attributes according to the following table.

Curve No.: Text Linestyle Colour Marking Type
1 Curve # 1 PS_SOLID BLACK none
2 Curve # 2 PS_DASH RED cross
3 Curve # 3 PS_DOT GREEN triangle top
4 Curve # 4 PS_DASHDOT BLUE triangle bottom
5 Curve # 5 PS_DASHDOTDOT MAGENTA square
6 Curve # 6 PS_SOLID CYAN circle
7 Curve # 7 PS_DASH YELLOW none
8 Curve # 8 PS_DOT GRAY cross

The 5 different linestyles, 6 marking types and 8 colours are repeated serially. The curve handles

(identifiers) are set automatically equal to the curve numbers. A standard drawing title will be

added below the axes frame.

Return The Windows handle of the plot object window for a successful windows creation. Otherwise

NULL is returned.

ShowPlotWindow

void far _pascal ShowPlotWindow(HWND HWnd, BOOL bflag);

Parameters HWnd is a Windows handle of a plot object window.

bflag is a flag to control the visibility of a plot object window (=TRUE - visible, else invisible).

Description The function ShowPlotWindow displays a previously created plot object window with the

Windows handle HWnd when the flag bflag is set equal to TRUE. Otherwise the plot object

window is hidden.

Laboratory Setup Ball and Beam BB50 Functions of the PLOT16.DLL

BB50 Windows Software V1.0 4-3

ClosePlotWindow

void far _pascal ClosePlotWindow(HWND HWnd)

Parameters HWnd is a Windows handle of a plot object window.

Description The function ClosePlotWindow closes a previously created plot object window with the

Windows handle HWnd and removes all the corresponding objects from the memory.

UpdatePlotWindow

void far _pascal UpdatePlotWindow(HWND HWnd)

Parameters HWnd is a Windows handle of a plot object window.

Description The function UpdatePlotWindow updates the drawing of a previously created plot object

window with the Windows handle HWnd.

GetValidPlotHandle

HWND far _pascal GetValidPlotHandle(int index)

Parameters index is an index to reference a plot object window.

Description The function GetValidPlotHandle determines the Windows handle HWnd of that plot object

window which is referenced by the given index. Starting with an index of 0 the handle of each

previously created plot object window is determinable. The function returns the value 0, when a

plot object window with the given index does not exist.

Return The handle HWnd of the plot object window referenced by index if it exists else 0.

AddPlotTitle

 void far _pascal AddPlotTitle(HWND HWnd, int Position, LPSTR title)

Parameters HWnd is a Windows handle of a plot object window.

Position is the position of the drawing title (TITLETEXT_TOP or

TITLETEXT_BOTTOM + possibly TITLETEXT_APPEND).

title is a pointer to the new drawing title with a maximum of 255 characters.

Description: The function AddPlotTitle inserts a new drawing title title at the position Position in a previously

created plot object window with the Windows handle HWnd. The position is either the upper part

of the drawing frame (TITLETEXT_TOP) or the lower part (TITLETEXT_BOTTOM). If the

macro TITLETEXT_APPEND is defined in addition the title is appended also to the windows

Functions of the PLOT16.DLL Laboratory Setup Ball and Beam BB50

4-4 BB50 Windows Software V1.0

title. However the overall length of this windows title is limited to 79 characters. The drawing

title must not exceed 255 characters. Line wrapping is carried-out automatically if necessary but

the drawing title will be truncated if it exceeds a third of the drawing height.

AddAxisPlotWindow

 WORD far _pascal AddAxisPlotWindow(HWND HWnd, WORD AxisID, LPSTR title,

WORD Position, WORD ScalingType, double ScalMin, double ScalDelta, double ScalMax

)

Parameters HWnd is a Windows handle of a plot object window.

AxisID is a reference to the axis (X-axis = X_AXIS, Y_axis = Y_AXIS, second Y-axis =

Y2_AXIS).

title is a pointer to the new axis title with a maximum of 255 characters.

Position is the position of the axis inside the axes frame:

X-axis at the bottom (AXE_BOTTOM), at the top (AXE_TOP) or in the middle

(AXE_MIDDLE), a Y-axis left (AXE_LEFT), right (AXE_RIGHT) or in the middle

(AXE_MIDDLE) of the frame.

ScalingType is the scaling mode for the new axis:

= LINEAR_SCALING | INTERN_SCALING - internal, linear

= LINEAR_SCALING | EXTERN_SCALING - external, l

= LOG_SCALING | INTERN_SCALING - internal, logarithmic

= LOG_SCALING | EXTERN_SCALING - external, logarithmic

ScalMin is the minimum external scaling value for the axis.

ScalDelta is the external scaling step for the axis.

ScalMax is the maximum external scaling value for the axis.

 Description The function AddAxisPlotWindow adds a new axis with the reference AxisID (X_AXIS,

Y_AXIS or Y2_AXIS) to a previously created plot object window with the Windows handle

HWnd. Any existing axis in this plot object with the same reference will be replaced by the new

one. The axis title title , the position Position inside the axes frame (AXE_BOTTOM /

AXE_LEFT, AXE_RIGHT / AXE_TOP or AXE_MIDDLE) as well as the scaling mode

ScalingType (LOG_SCALING / LINEAR_SCALING and EXTERN_SCALING /

INTERN_SCALING) are to be defined for the new axis. The scaling values ScalMin, ScalDelta

and ScalMax are considered only when the macro EXTERN_SCALING is defined for the scaling

mode. Otherwise the scaling values are determined automatically.

Return The axis reference AxisID when the axis was created successfully, else 0.

Laboratory Setup Ball and Beam BB50 Functions of the PLOT16.DLL

BB50 Windows Software V1.0 4-5

AddXData:

void far _pascal AddXData(HWND HWnd, WORD XCount, double far* XData)

Parameters: HWnd is a Windows handle of a plot object window.

XCount is the number of points for the X-axis in the plot object.

*Xdata is a pointer to the data of the X-axis in the plot object.

Description: The function AddXData adds new data XData with a number of XCount values for the X-axis

to a previously created plot object window with the Windows handle HWnd. Any existing data

of a X-axis in this plot object are replaced by the new data.

AddTimeData:

void far _pascal AddTimeData(HWND HWnd, WORD XCount, double StartTime,

double SamplingPeriod)

Parameters: HWnd is a Windows handle of a plot object window.

XCount is the number of points (time values) for the X-axis in the plot object.

StartTime is the initial value for the time axis (=X-axis).

SamplingPeriod is the sampling period, the time distance between two successive values for

the time axis (=X-axis).

Description: The function AddTimeData adds new data with a number of XCount time values for the X-axis

to a previously created plot object window with the Windows handle HWnd. The time values start

with StartTime and end with (XCount - 1) * SamplingPeriod. Any existing data of a X-axis in

this plot object are replaced by the new data.

AddYData:

WORD far _pascal AddYData(HWND HWnd, WORD nYCount, double far* YData)

Parameters: HWnd is a Windows handle of a plot object window.

nYCount is the number of points for the Y-curve in the plot object.

*Ydata is a pointer to the data for the Y-curve in the plot object.

Description: The function AddYData adds a new Y-curve given by the data YData with a number of YCount

 values to a previously created plot object window with the Windows handle HWnd. The function

returns an automatically generated reference (handle) for the Y-curve when a valid plot object

window exists. The standard values for the curve-attributes linestyle, colour, marking type and

describing text ("Curve #xx") are set automatically as described with the function

CreateSimplePlotWindow with respect to the returned reference value. In case no data are

defined for a X-axis, a standard time axis from 1.0 to nYCount*1.0 is generated in addition.

Functions of the PLOT16.DLL Laboratory Setup Ball and Beam BB50

4-6 BB50 Windows Software V1.0

Return Is equal to the automatically generated reference (idCurve) of the added Y-curve, when the plot

object window exists, else equal to 0.

See also CreateSimplePlotWindow.

SetCurveMode

int far _pascal SetCurveMode(HWND HWnd, WORD idCurve, LPSTR title,

WORD AxisId, WORD LineStyle, DWORD Colour, WORD MarkType)

Parameters HWnd is a Windows handle of a plot object window.

idCurve is the reference (handle) of the Y-curve.

title is a pointer to the new describing text of the Y-curve used for the linestyle table with a

maximum of 255 characters. The current describing text is retained when the length of this

string is equal to 0.

AxisId is the assignment to the Y-axis (Y_AXIS) or Y2-axis (Y2_AXIS).

LineStyle is the linestyle of the Y-curve (see CreateSimplePlotWindow). The current linestyle

is retained when this parameter is equal to 0xFFFF.

Colour is the (RGB-) colour of the Y-curve. The current colour is retained when this

parameter is equal 0xFFFFFFFFL.

MarkType is the marking type of the Y-curve. The current marking type is retained when this

parameter is equal 0xFFFF.

Description The function SetCurveMode changes the attributes of a Y-curve referenced by idCurve

belonging to a previously created plot object window with the Windows handle HWnd. The

describing text title for the linestyle table, the assignment AxisId to the Y- or Y2-axis, the linestyle

LineStyle, the colour Colour as well as the marking type MarkType are assignable.

Remark: When a Y2-axis is not existing but a curve is assigned to this axis the linestyle table

demonstrates this fact by displaying only the describing text for this curve without the short piece

of a straight line. The number of characters in the describing text should be short with respect to

the number of curves.

Return Is equal to 1, when the Y-curve with idCurve exists, else equal to 0.

SetPlotMode

int far _pascal SetPlotMode(HWND HWnd, WORD TitlePosition, DWORD TitleColour,

LPSTR Title, WORD WithLineStyleTable, WORD WithAxisFrame,

WORD WithPlotFrame, DWORD FrameColour, WORD WithDate, long OldDate,

LPSTR FontName, int MaxCharSize)

Parameters HWnd is a Windows handle of a plot object window.

Laboratory Setup Ball and Beam BB50 Functions of the PLOT16.DLL

BB50 Windows Software V1.0 4-7

TitlePosition is the position of the drawing title (TITLETEXT_TOP or

TITLETEXT_BOTTOM + possibly TITLETEXT_APPEND).

TitleColour is the (RGB-) colour for the drawing title. The current colour is retained when this

parameter is equal 0xFFFFFFFFL.

Title is a pointer to the new drawing title with a maximum of 255 characters. The current

drawing title text is retained when the length of this string is equal to 0.

WithLineStyleTable enables (=TRUE) or disables (=FALSE) the display mode of the linestyle

table.

WithAxisFrame is a flag determining if a frame is to be drawn around the axes crossing

(=TRUE) or not (=FALSE).

WithPlotFrame is a flag determining if a frame is to be drawn around the drawing (=TRUE) or

not (=FALSE) only during output to a Windows Meta File or a raster device.

FrameColour is the (RGB-) colour for the axes frame. The current colour is retained when this

parameter is equal 0xFFFFFFFFL.

WithDate is a parameter determining if no date (=FALSE), the current date (=NEW_DATE) or

a given ’old’ date (=OLD_DATE) is to be inserted in the upper left part of the drawing.

OldDate is the ’old’ date, which is considered only when WithDate is set to OLD_DATE.

FontName is the font name of the character set used for all text outputs (titles, date, linestyle

table, labels). If the length of this name is equal to 0, the default character set will be used.

MaxCharSize is the maximum character height for all text outputs used with a maximum

window size. Reducing the plot window size will scale down the character height to a

minimum of 12 pixels. If this parameter is equal to 0xFFFF, the default maximum

character size will be used.

Description: The function SetPlotMode changes the general layout of a plot object window with the Windows

handle HWnd previously created i.e. by CreateSimplePlotWindow.

As described with the function AddPlotTitle a new drawing title title is inserted at the position

Position . The position is either the upper part of the drawing frame (TITLETEXT_TOP) or the

lower part (TITLETEXT_BOTTOM). If the macro TITLETEXT_APPEND is defined in addition

the title is appended also to the windows title. However the overall length of this windows title

is limited to 79 characters. The drawing title must not exceed 255 characters. Line wrapping is

carried-out automatically if necessary but the drawing title will be truncated if it exceeds a third

of the drawing height. The drawing title is displayed using the colour TitleColor and the character

set FontName with a maximum character height MaxCharSize (for a maximum size of the plot

window). The character set as well as the maximum character height are also used for the other

text outputs.

If the flag WithLineStyleTable is set to TRUE a linestyle table is inserted above the axes frame

containing a short piece of a straight line for each Y-curve with the accompanying attributes

linestyle, colour and marking type followed by a short describing text in the standard form "Curve

#xx" or defined by the function SetCurveMode.

When the flag WithAxisFrame is set to TRUE, a frame is drawn around the axes crossing using

the colour FrameColour only at those margins, which are not occupied by an axis.

When the flag WithPlotFrame is set to TRUE, an additional frame is drawn around the complete

Functions of the PLOT16.DLL Laboratory Setup Ball and Beam BB50

4-8 BB50 Windows Software V1.0

drawing using the colour FrameColour only in case the plot window is output to a Windows Meta

File or to a raster device.

The parameter WithDate determines the display mode of the date in the upper left part of the

drawing. With WithDate set to FALSE the date output is missing. With WithDate set to

NEW_DATE the current date (day, month, year and time during drawing the plot) is inserted

while WithDate set to OLD_DATE will display the date given by the parameter OldDate.

Return Is equal to 1, when the plot window with the handle HWnd exists, else equal to 0.

See also CreateSimplePlotWindow, AddPlotTitle, SetCurveMode.

PrintPlotWindow

void far _pascal PrintPlotWindow(HWND HWnd, HDC printerDC, int xBegin, int yBegin,

int xWidth, int yHeight, BOOL scale)

Parameters HWnd is a Windows handle of a plot object window.

printerDC is the device context of the output device.

xBegin is the left margin of the hardcopy (mm/Pixel)

yBegin is the upper margin of the hardcopy (mm/Pixel)

xWidth is the width of the hardcopy (mm/Pixel)

yHeight is the height of the hardcopy (mm/Pixel)

scale =TRUE, position and size of the hardcopy in [mm],

else position and size of the hardcopy in pixels.

Description: The function PrintPlotWindow generates an output (typically a hardcopy) of a previously created

plot object window with the Windows handle HWnd. The output device is defined by its device

context handle printerDC. The position and the size of the hardcopy are determined by the

parameters xBegin, yBegin, xWidth and yHeight. These parameters are interpreted as [mm], when

the parameter scale is set to TRUE. Otherwise these parameters are taken as pixel numbers.

Laboratory Setup Ball and Beam BB50 Functions of the PLOT16.DLL

BB50 Windows Software V1.0 4-9

CreateEmptyPlotWindow

HWND far _pascal CreateEmptyPlotWindow(HWND parentHWnd)

Parameters parentHWnd is the windows handle of the parent window.

Description: The function CreateEmptyPlotWindow creates a window with an ’empty’ plot object. This plot

object only contains the current date, an empty axes frame as well as a standard drawing title

above this frame.

Return The Windows handle of the plot object window for a successful windows creation. Otherwise

NULL is returned.

Functions of the PLOT16.DLL Laboratory Setup Ball and Beam BB50

4-10 BB50 Windows Software V1.0

5 Interface Functions of the TIMER16.DLL

The TIMER16.DLL supports the cyclic call of specific functions of the "Service"-DLL which realizes a sampled

data control with a constant sampling period.

LibMain

int LibMain(HINSTANCE , WORD, WORD, LPSTR)

Parameters All parameters will be left out of consideration.

Description The function LibMain loads the SERVICE.DLL and determines the addresses of the functions

DoService, SetParameters, GetData and LockMemory included in this DLL. A value of 1 is

returned only when the operations DLL loading as well as address determination have been

successful. Otherwise a value of 0 is returned meaning that further accesses to the SERVICE.DLL

are invalid.

Return Is equal to 1 in case of successful loading the SERVICE.DLL and correct address determination,

else equal to 0.

StartTimer

int StartTimer(double Time)

Parameters Time is the sampling period in seconds (minimum 0.001 s).

Description The function StartTimer opens and initializes the PC adapter card driver with the name given

by the global variable szDriverName (see also SelectDriver). The code and data memory of this

DLL as well as that of the SERVICE.DLL is locked (no longer moveable because of the function

start addresses). A multi-media timer is programmed according to the given sampling period. A

value of 0 (TERR_OK) is returned only when all of the operations were carried-out successfully.

Return Error state :

TERR_OK (0) on successful operations,

TERR_RUNNING (1), when a timer is still running,

TERR_TOOFAST (2), when the selected sampling period is too small

TERR_DRV_LOAD_FAIL (5), when the card driver opening fails

TERR_MEM_LOCK_FAIL (6), when locking the memory of the

TIMER16.DLL and the SERVICE.DLL fails.

Laboratory Setup Ball and Beam BB50 Interface Functions of the TIMER16.DLL

BB50 Windows Software V1.0 5-1

StopTimer

int StopTimer(void)

Description The function StopTimer stops the currently running multi-media timer, unlocks the memory of

this DLL as well as of the SERVICE.DLL and closes the current adapter card driver.

Return Error state:

TERR_OK (0) on successful operations,

TERR_RUNNING (1), when no timer is running

GetMinMaxTime

GetMinMaxTime(DWORD &min , DWORD &max, BOOL res)

Parameters &min is a reference to the minimum sampling period in ms.

&max is a reference to the maximum sampling period in ms.

res is a flag to reset the minimum and maximum value of the sampling period.

Description The function GetMinMaxTime returns the minimum and maximum value of the real sampling

period determined up to this time. With res=1 the minimum and maximum value are set to the

nominal sampling period.

GetSimTime

float GetSimTime(void)

Description The function GetSimTime returns the (simulation) time passed since the last start of a multi-me-

dia timer. This value is calculated by the product of the nominal sampling period and the number

of calls of the function DoService.

Return Time in seconds since the last call of StartTimer.

Interface Functions of the TIMER16.DLL Laboratory Setup Ball and Beam BB50

5-2 BB50 Windows Software V1.0

SetupDriver

int SetupDriver(void)

Description The function SetupDriver opens the PC adapter card driver with the name given by the global

variable szDriverName (see also SelectDriver) and starts the dialog to adjust the base address

only when no multi-media timer is running and in case no card driver is open. The driver is closed

again at the end of the dialog. If opening or closing the driver or carrying-out the dialog fails

corresponding messages will appear on the screen.

Return Error state :

TERR_OK (0) on successful operations,

TERR_RUNNING (1), when a timer is still running,

TERR_FAIL (99), when a driver is open or opening and closing the driver fails.

SelectDriver

int SelectDriver(LPSTR lpDriverName)

Parameters lpDriverName is the file name of a new driver for the PC adapter card.

Description The function SelectDriver copies the given file name to the global variable szDriverName which

adjusts the driver for the PC adapter card only when no driver is open and no multi-media timer

is running.

Return Error state :

TERR_OK (0) on successful operations,

TERR_RUNNING (1), when a timer is still running,

TERR_FAIL (99), when a driver is still open.

Laboratory Setup Ball and Beam BB50 Interface Functions of the TIMER16.DLL

BB50 Windows Software V1.0 5-3

Interface Functions of the TIMER16.DLL Laboratory Setup Ball and Beam BB50

5-4 BB50 Windows Software V1.0

6 Windows Drivers for DAC98, DAC6214 and DIC24

The drivers are installable 16-Bit drivers applicable to 16- or 32-Bit programs with Windows 3.1 / 95 / 98. To

exchange data with the drivers the following three 16-Bit API functions are used:

OpenDriver

HDRVR hDriver = OpenDriver(szDriverName, NULL, NULL)

Parameters szDriverName is the file name of the driver, valid names are "DAC98.DRV",

"DAC6214.DRV" and "DIC24.DRV" (according to the PC adapter cards) possibly

combined with complete path names.

Description The function OpenDriver initializes the driver and returns a handle for following accesses to this

driver. If this function is called the first time the driver is loaded into the memory. Any further

calls return another handle of an existing driver. The driver handle is valid only when the return

value is unequal to NULL. In case the return value is equal to NULL, the function OpenDriver
 failed meaning that further driver accesses by the functions SendDriverMessage or CloseDriver
 are invalid. The parameter szDriverName of the function OpenDriver contains the DOS file

name of the driver. The file name may include the disk name as well as the complete path names

according to the 8.3 name convention but it must not exceed 80 characters. When only a single

file name is used, the drivers location is expected in the standard search path of Windows. The

other parameters are meaningless and should be equal to NULL.

Return Valid driver handle or NULL.

Laboratory Setup Ball and Beam BB50 Windows Drivers for DAC98, DAC6214 and DIC24

BB50 Windows Software V1.0 6-1

SendDriverMessage

LRESULT result = SendDriverMessage(hDriver, DRV_USER, PARAMETER1,

PARAMETER2)

Parameters hDriver is a handle of the card driver.

DRV_USER is the flag indicating special commands.

PARAMETER1 is a special command and determines the affected channel number

 (see table below).

PARAMETER2 is the output value for special write commands.

Description The function SendDriverMessage transfers a command to the driver specified by the handle

hDriver. The drivers for the adapter cards from amira expect the value DRV_USER for the second

parameter (further commands can be found in the API documentation of SendDriverMessage).

The third parameter PARAMETER1 is of type ULONG specifying the command which is to be

carried-out. The lower 8 bits of this parameter determine the channel (number) which is to be

affected by the given command. The commands are valid for all of the three drivers. But the valid

channel numbers depend on the actual hardware. The last parameter PARAMETER2 is of type

ULONG and is used with write commands. It contains the output value. The return value depends

on the command. Commands and channel names are defined in the file "IODRVCMD.H".

Return Is equal to 0 in case of unsupported commands or special write commands. Otherwise it contains

the result of special read commands.

Table of the supported standard API commands
Command Return Remark
DRV_LOAD 1 loads the standard base address from SYSTEM.INI
DRV_FREE 1
DRV_OPEN 1
DRV_CLOSE 1
DRV_ENABLE 1 locks the memory range for this driver
DRV_DISABLE 1 unlocks the memory range for this driver
DRV_INSTALL DRVCNF_OK
DRV_REMOVE 0,
DRV_QUERYCONFIGURE 1
DRV_CONFIGURE 1 calls the dialog to adjust the base address
DRV_POWER 1
DRV_EXITSESSION 0
DRV_EXITAPPLICATION 0

Windows Drivers for DAC98, DAC6214 and DIC24 Laboratory Setup Ball and Beam BB50

6-2 BB50 Windows Software V1.0

Table of the special commands with the flag DRV_USER:
PARAMETER1

Return
Command Channel Number

DAC98 DAC6214 DIC24
DRVCMD_INIT

initializes the card and has to be the

first command

0

DRVINFO_AREAD

returns the number of analog inputs

8 for DAC98,

6 for DAC6214,

 0 for DIC24
DRVINFO_AWRITE

returns the number of analog outputs
2 for all cards

DRVINFO_DREAD

returns the number of digital inputs

8 for DAC98, DIC24

4 for DAC6214
DRVINFO_DWRITE

returns the number of digital outputs

8 for DAC98, DIC24

4 for DAC6214
DRVINFO_COUNT

returns the number of counters and

timers

5 for DAC98

1 for DAC6214

6 for DIC24

DRVCMD_AREAD

reads an analog input
0-7 0-5 no inputs

16 bit value from -32768 to

32767 according to the input

voltage range
DRVCMD_AWRITE

writes to an analog output
0-1 0-1 0-1 0

DRVCMD_DREAD

reads a single digital input or all inputs

(ALL_CHANNELS)

0-7 or

ALL_CHAN

0-3 or

ALL_CHAN

0-7 or

ALL_CHAN

state (0 or 1) of a single input

or states binary coded

(channel0==bit0)
DRVCMD_DWRITE

writes to a single digital output or to all

outputs (channel0==bit0)

0-7 or

ALL_CHAN

0-3 or

ALL_CHAN

0-7 or

ALL_CHAN
0

DRVCMD_COUNT

reads a counter / timer

DDM0

DDM1

DDM2

COUNTER

TIMER

DDM0

DDM0

DDM1

DDM2

DDM3

COUNTER

TIMER

counter- / timer-content as an

unsigned 32-bit value

DRVCMD_RCOUNT

resets a counter / timer (counter, timer

to the value -1) or all DDM’s

(ALL_CHANNELS)

DDM0

DDM1

DDM2

COUNTER

TIMER

ALL_CHAN

DDM0

DDM0

DDM1

DDM2

DDM3

COUNTER

TIMER

ALL_CHAN

0

DRVCMD_SCOUNT

presets a counter / timer to an initial

value

COUNTER

TIMER

COUNTER

TIMER
0

CloseDriver

Laboratory Setup Ball and Beam BB50 Windows Drivers for DAC98, DAC6214 and DIC24

BB50 Windows Software V1.0 6-3

CloseDriver(hDriver, NULL, NULL)

Parameters hDriver is a handle of the card driver.

Description The function CloseDriver terminates the operation of the driver specified by the handle hDriver.

The driver is removed from the memory when all of its handles are released by the function

 CloseDriver.

Windows Drivers for DAC98, DAC6214 and DIC24 Laboratory Setup Ball and Beam BB50

6-4 BB50 Windows Software V1.0

	Laboratory Setup Ball and Beam
	Table of Contents
	1 Assembly and Start-Up
	Table of Contents
	1 Assembly and Start-Up
	1.1 Unpacking
	1.2 Setting up the System
	1.2.1 The BB50 Mechanics
	1.2.2 Actuator

	1.3 Description of the BB50Mechanical Setup
	1.4 Description of the BB50Actuator
	1.4.1 The Rear Panel
	1.4.2 The Front Panel
	1.4.2.1 Panel Section SYSTEMSTATUS
	1.4.2.2 Panel Section POWER
	1.4.2.3 Panel Section MONITOR
	1.4.2.4 Panel Section CONTROLLER

	1.5 Connecting the SystemComponents and Start Up
	1.6 Manual Control
	1.7 Control with ExternalController
	1.8 PC Control
	1.9 Output Stage Release
	1.10 Locating Errors

	2 Technical Data
	Table of Contents
	1 Technical Data
	1.1 BB50 Mechanics, Drive,Sensors
	1.1.1 Dimensions and Weight of theBB50 Mechanics
	1.1.2 The Drive
	1.1.3 The Incremental Encoder
	1.1.4 The Camera
	1.1.5 The Monitor (Option 500-06)

	1.2 Actuator
	1.2.1 SERVO MOTOR
	1.2.2 POWER SERVO
	1.2.3 Panel Section MONITOR
	1.2.4 POWER
	1.2.5 Panel Section CONTROLLER
	1.2.6 Rear Panel Connections

	3 Mathematical Model of the System
	Table of Contents
	1 Mathematical Model ofthe Ball and BeamSystem
	1.1 System Description Usedfor the Model
	1.2 Methods for Modelling
	1.3 The Lagrange Equations of 2. Kind
	1.3.1 Application on the Ball andBeam System

	1.4 State Space Description ofthe Non-linear Model
	1.5 Linearization of the StateSpace Description of theNonlinear Model
	1.6 References

	4 Theoretical Background of the State Controller
	Table of Contents
	1 Controller Design inthe State Space
	1.1 State Equations of SampledData Systems
	1.2 Sampled Data Control withFeedback of the State Vector
	1.2.1 Calculation of the ControllerFeedback Matrix

	1.3 State Observers
	1.3.1 The Luenberger Observer
	1.3.2 Reduced Order Observer

	1.4 State Observer in theControl Loop
	1.5 Disturbance Observer
	1.6 References

	2 Realization of theState Controller
	2.1 Model Parameters for theBall and Beam System
	2.2 Linear State Space Model
	2.3 Design of the StateController
	2.3.1 Eigenvalues of the Ball andBeam System
	2.3.2 Controller Design Using PolePlacement

	2.4 Design of Reduced OrderState Observer
	2.5 Design of a DisturbanceObserver
	2.6 Filtering the Camera Signalfor the Ball Position

	5 Theoretical Background of the Fuzzy Controller
	Table of Contents
	1 Backgrounds of the Fuzzy Controller
	1.1 The Fuzzy Set
	1.2 The Linguistic Variable
	1.3 The Fuzzification
	1.4 The Rule and the Rule Base
	1.5 The Inference Operation
	1.5.1 The Aggregation
	1.5.2 The Implication
	1.5.3 The Conclusion
	1.5.4 The Inference

	1.6 The Defuzzification
	1.7 Remarks

	2 Realization of theFuzzy Controller

	6 Program Operation (WINDOWS Version)
	Table of Contents
	1 Program Operation
	1.1 Program Start
	1.2 Sensor Calibration
	1.3 Main Window
	1.4 Menu File
	1.5 Menu IO-Interface
	1.6 Menu Edit
	1.7 Menu Run
	1.8 Menu View
	1.9 Menu Help
	1.10 Description of the FileFormats
	1.10.1 The Format of the Fuzzy Description File (*.FUZ)
	1.10.2 Format of the File ERROR.OUT
	1.10.3 Format of the Fuzzy Controller File for the Laboratory Experiment BB50 (*.FBW)
	1.10.4 Format of the State Controller File for the Laboratory Experiment BB50 (*.STA)
	1.10.5 The Format of the Documentation File *.PLD
	1.10.6 Format of the Calibration Data File DEFAULT.CAL

	1.11 The DEMO Version

	7 BB50 Windows Software V1.0
	Table of Contents
	1 Source Files of the BB50W Controller Program
	1.1 General
	1.2 Global Data and Functions
	1.3 Dialogs and Windows of the Desktop
	1.4 Overview of Classes and DLL Interfaces
	1.5 References of the DLL Interfaces
	1.5.1 The DLL Interface BWSERV16
	1.5.2 The Class BW502STA in the BWSERV16.DLL
	1.5.3 The Class BW502FUZ in the BWSERV16.DLL
	1.5.4 The Class STOREBUF in the BWSERV16.DLL
	1.5.5 The Class AFBUF in the BWSERV16.DLL
	1.5.6 The Class TWOBUFFER in the BWSERV16.DLL
	1.5.7 The Class Signal in the BWSERV16.DLL
	1.5.8 The DLL Interface PLOT

	2 Driver Functions for BB50
	2.1 The Class DICDRV
	2.2 The Class WDAC98

	3 The Fuzzy Library
	3.1 Introduction to the Structure of the Fuzzy Library
	3.2 Description of the Classes
	3.2.1 General
	3.2.2 Overview of the Classes
	3.2.3 References of the Classes, their Data and Element Functions
	3.2.3.1 The Class FuzzySet
	3.2.3.2 The class FuzzyVar
	3.2.3.3 The class FuzzyRule
	3.2.3.4 The Class Fuzzy

	3.3 Description of the File Formats
	3.3.1 The Format of the Fuzzy Description File (*.FUZ)
	3.3.2 The Format of the Error Output File ERROR.OUT

	3.4 A Very Simple Example
	3.4.1 The Fuzzy Description File of a Temperature Control
	3.4.2 The C++ Sources of a Temperature Control

	4 Functions of the PLOT16.DLL
	5 Interface Functions of the TIMER16.DLL
	6 Windows Drivers for DAC98, DAC6214 and DIC24

